ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Gryzlov D. Y., Kulova T. L., Skundin A. M., Andreev V. N., Mel'nikov V. P., Kalinichenko V. N. A Double Layer Supercapacitor for Wide Temperature Range. Electrochemical Energetics, 2019, vol. 19, iss. 3, pp. 141-?. DOI: 10.18500/1608-4039-2019-19-3-141-147, EDN: QHQALM

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 187)
Language: 
Russian
Heading: 
Article type: 
Article
EDN: 
QHQALM

A Double Layer Supercapacitor for Wide Temperature Range

Autors: 
Gryzlov Dmitrii Yur'evich, Institute of Physical Chemistry and Electrochemistry of A. N. Frumkina of RAS
Kulova Tatiana L'vovna, A. N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS
Skundin Aleksandr Mordukhaevich, Institute of Physical Chemistry and Electrochemistry of A. N. Frumkina of RAS
Andreev Vladimir Nikolaevich, Institute of Physical Chemistry and Electrochemistry of A. N. Frumkina of RAS
Mel'nikov Valery Pavlovich, Institute of Chemical Physics of N. N. Semyonov of RAS
Kalinichenko Valerii Nikolaevich, Institute of Chemical Physics of N. N. Semyonov of RAS
Abstract: 

The cyclic voltammetry was used to study the behavior of a symmetric supercapacitor with activated carbon cloth electrodes and a solution of an ionic liquid (C8H15N2PF6) in freon-22 as an electrolyte in the temperature range from ? 140 to + 130°C. The measurements were carried out in a special autoclave. At temperatures above 90°C, the supercapacitor exhibits purely capacitive behavior, whereas at the temperature lowering, the influence of resistance strongly increases.

Reference: 

1. Bagotsky V. S., Skundin A. M., Volfkovich Yu. M. Electrochemical Power Sources : Batteries, Fuel Cells, and Supercapacitors. Wiley, 2015. 400 p.

2. Poonam, Sharma K., Arora A., Tripathi S. K. Review of supercapacitors : Materials and devices. Journal of Energy Storage, 2019, vol. 21, pp. 801–825.

3. Kumar Y., Rawal S., Joshi B., Hashmi S. A. Background, fundamental understanding and progress in electrochemical capacitors. J. Solid State Electrochem., 2019, vol. 23, pp. 667–692.

4. Liu C.-F., Liu Y.-C., Yi T.-Y., Hu C.-C. Carbon materials for high-voltage supercapacitors. Carbon, 2019, vol. 145, pp. 529–548.

5. Ciszewski M., Koszorek A., Radko T., Szatkowski P., Janas D. Review of the Selected Carbon-Based Materials for Symmetric Supercapacitor Application. J. Electron. Mater., 2019, vol. 48, pp. 717744.

6. Xie S., Liu S., Cheng P. F., Lu X. Recent Advances toward Achieving High-Performance Carbon-Fiber Materials for Supercapacitors. ChemElectroChem., 2018, vol. 5, pp. 571–582.

7. Salanne M. Ionic Liquids for Supercapacitor Applications. Top. Cur. Chem., 2017, vol. 375, Article no. 63.

8. McEwen A. B., Ngo H. L., LeCompte K., Goldman J. L. Electrochemical Properties of Imidazolium Salt Electrolytes for Electrochemical Capacitor Applications. J. Electrochem. Soc., 1999, vol. 146, pp. 1687–1695.

9. Tee E., Tallo I., Thomberg T., Janes A., Lust E. Supercapacitors Based on Activated Silicon Carbide-Derived Carbon Materials and Ionic Liquid. J. Electrochem. Soc., 2016, vol. 163, pp. A1317–A1325.

10. Sato T., Masuda G., Takagi K. Electrochemical properties of novel ionic liquids for electric double layer capacitor applications. Electrochim. Acta, 2004, vol. 49, pp. 3603–3611.

11. Balducci A., Bardi U., Caporali S., Mastragostino M., Soavi F. Ionic liquids for hybrid supercapacitors. Electrochem. Comm., 2004, vol. 6, pp. 566–570.

12. Dinan T., Stimming U. Temperature and Frequency Dependence of the Double Layer Capacity on Gold in HClO4 ? 5.5H2O. J. Electrochem. Soc., 1986, vol. 133, pp. 2662–2663.

13. Hamelin A., Rottgermann S., Schmickler W. The Double Layer of Single Crystal Gold Electrodes in Liquid and Solid HClO4 ? 5.5 H2O. J. Electroanalyt. Chem., 1987, vol. 230, pp. 281–287.

Received: 
09.04.2019
Accepted: 
05.05.2019
Published: 
20.09.2019