ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Prokhorov I. Y. Differential electrochemical impedance spectroscopy of the polymer proton electrolytes. Electrochemical Energetics, 2021, vol. 21, iss. 1, pp. 21-31. DOI: 10.18500/1608-4039-2021-21-1-21-31, EDN: MNTVDM

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 141)
Language: 
Russian
Heading: 
Article type: 
Article
EDN: 
MNTVDM

Differential electrochemical impedance spectroscopy of the polymer proton electrolytes

Autors: 
Prokhorov Igor' Yur'evich, Federal State Institution «A. A. Galkin Donetsk Physical and Technical Institute»
Abstract: 

A method of deriving standard electrochemical impedance spectroscopy (EIS) data such as Bode diagram, Nyquist diagram, and others from frequency dependence of the external impedance using numerical differentiation of the indicated dependence in quadratic coordinates is proposed, the method being named as the differential electrochemical impedance spectroscopy (DEIS). The method was tested experimentally on polyvinyl alcohol-based proton membranes doped with sulphated montmorillonite in granulated or dispersed states as an example. It is shown that DEIS data can be easier and with higher accuracy described by regular semicircles while leaving intact values of ohmic resistance. Very high values of dielectric permeability were obtained in the work enabling to develop condensers with high capacity based on highly conductive polymeric proton electrolytes.

Reference: 

1. Barsoukov E., Macdonald J. R., eds. Impedance Spectroscopy : Theory, Experiment, and Applications. 2nd ed. Hoboken, New Jersey, John Wiley & Sons Inc., 2005. 595 p. https://www.doi.org/10.1002/0471716243

2. Di Noto V., Piga M., Giffin G. A., Pace G. Broadband electric spectroscopy of proton conducting SPEEK membranes. J. Membrane Sci., 2012, vol. 390–391, pp. 58– 67. https://www.doi.org/10.1016/j.memsci.2011.10.049

3. Touhami S., Mainka J., Dillet J., Ait Hammou Taleb S., Lottin O. Transmission line impedance models considering oxygen transport limitations in polymer electrolyte membrane fuel cells. J. Electrochem. Soc., 2019, vol. 166, iss. 15, pp. F1209–F1217. https://www.doi.org/10.1149/2.0891915jes

4. Krukiewicz K. Electrochemical impedance spectroscopy as a versatile tool for the characterization of neural tissue : A mini review. Electrochem. Comm., 2020, vol. 116, article 106742. https://www.doi.org/10.1016/j.elecom.2020.106742

5. Jocsak I., Vegvari G., Vozary E. Electrical impedance measurement on plants : A review with some insights to other fields. Theor. Exp. Plant Physiol., 2019, vol. 31, iss. 3, pp. 359–375. https://www.doi.org/10.1007/s40626-019-00152-y

6. Chang B.-Y., Park S.-M. Electrochemical impedance spectroscopy. Annual Review of Analytical Chemistry, 2010, vol. 3, pp. 207–229. https://www.doi.org/10.1146/annurev.anchem.012809.102211

7. Balasubramani V., Chandraleka S., Subba Rao T., Sasikumar R., Kuppusamy M. R., Sridhar T. M. Review – Recent advances in electrochemical impedance spectroscopy based toxic gas sensors using semiconducting metal oxides. J. Electrochem. Soc., 2020, vol. 167, iss. 3, article 037572. 17 p. https://www.doi.org/10.1149/1945-7111/ab77a0

8. Anderson E. L., Buhlmann P. Electrochemical impedance spectroscopy of ion-selective membranes : Artifacts in two-, three-, and four-electrode measurements. Anal. Chem., 2016, vol. 88, iss. 19, pp. 9738–9745. https://www.doi.org/10.1021/acs.analchem.6b02641

9. Jorcin J.-B., Orazem M. E., Pebere N., Tribollet B. CPE analysis by local electrochemical impedance spectroscopy. Electrochimica Acta, 2006, vol. 51, iss. 8–9, pp. 1473–1479. https://www.doi.org/10.1016/j.electacta.2005.02.128

10. Wong C. Y., Wong W. Y., Loh K. S., Daud W. R. W., Lim K. L., Khalid M., Walvekar R. Development of poly(vinyl alcohol)-based polymers as proton exchange membranes and challenges in fuel cell application : A review. Polymer Reviews, 2020, vol. 60, iss. 1, pp. 171–202. https://www.doi.org/10.1080/15583724.2019.1641514

11. Altaf F., Gill R., Batool R., Drexler M., Alamgir F., Abbas G., Jacob K. Proton conductivity and methanol permeability study of polymer electrolyte membranes with range of functionalized clay content for fuel cell application. European Polymer J., 2019, vol. 110, pp. 155–167. https://www.doi.org/10.1016/j.eurpolymj.2018.11.027

12. Prokhorov I. Yu. Role of ionic donor’s structural state in polyvinyl alcohol based proton conducting membranes // Elektrokhimicheskaya energetika [Electrochemical Energetics], 2017, vol. 17, iss. 2, pp. 89–98 (in Russian). https://www.doi.org/10.18500/1608-4039-2017-17-2-89-98

13. Prokhorov I. Yu. Mechanisms of proton conduction in highly selective membranes with granulated protonic donor // Elektrokhimicheskaya energetika [Electrochemical Energetics], 2017, vol. 17, iss. 3, pp. 159–169 (in Russian). https://www.doi.org/10.18500/1608-4039-2017-17-3-159-169

14. Emelyanova Y. V., Morozova M. V., Mikhailovskaya Z. A., Buyanova E. S. Impedansnaya spektroskopiya : teoriya i primeneniye : ucheb. posobie. Pod obshch. red. E. S. Buyanovoi [Impedance Spectroscopy : Theory and Applications. Total ed. E. S. Buyanova]. Ekaterinburg, Izdatel’stvo Ural’skogo universiteta, 2017. 156 p.

Received: 
25.09.2021
Accepted: 
19.03.2021
Published: 
25.03.2021