Development of the Electrode Material of the Lithium-ion Battery Based on Lithium-nickel(II) and Cuprum(II)-Lithium Vanadates

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).


Of interest are lithium-d-metal LiMVO4 vanadates with a hybrid functioning mechanism and a theoretical specific capacity limit of ∼1000 mA⋅h⋅g−1. The work deals the properties of materials based on LiNiVO4 with the cubic spinel structure and LiCuVO4 with the rhombic spinel structure obtained by high-temperature treatment of preliminary mechanically activated systems, methods of modification and discusses the features of their electrochemical behavior.

The electrochemical behavior of the obtained electrode materials is determined in the main by their coating level on the current collector and is limited to their significant cycle-to-cycle degradation due to a failure of the contact of the active material with the current collector. A significant improvement in electrochemical behavior is observed for materials obtained in the high purity argon atmosphere, but at the same time characterized by the presence of impurities, including reduced vanadium oxides of mixed valence. The correspondence between the increase in phase purity and the level of electrochemical properties of LiNiVO4 is observed when Li4Ti5O12 is used as a seed for the crystallization of the target phase. For materials based on LiNiVO4, the initial specific capacitance of 540 mA⋅h⋅g−1 is reached at the moderate coating level, and for LiCuVO4 – 155 mA⋅h⋅g−1.


1. Goriparti S., Miele E., Angelis F. De, Fabrizio E. Di, Zaccaria R. P., Capiglia C. Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources, 2014, vol. 257, pp. 421–443.

2. Li H., Liu X., Zhai T., Li D., Zhou H. Li3VO4: A promising insertion anode material for lithium-ion batteries. Advanced Energy Materials, 2013, vol. 3, pp. 428–432.

3. Li M., Yang X., Wang C., Chen N., Hu F., Bie X., Wei Y., Du F., Chen G. Electrochemical properties and lithium-ion storage mechanism of LiCuVO4 as an intercalation anode material for lithium-ion batteries. J. Mater. Chem. A, 2015, vol. 3, pp. 586–592.

4. Shirakawa J., Nakayaraa M., Ikuta H., Uchimoto Y., Wakihara M. Lithium insertion / removal mechanism of LiCoVO4 in lithium-ion cells. Electrochem. Solid-State Lett., 2004, vol. 7, pp. A27–A29.

5. Reddy M. V., Wannek C., Pecquenard B., Vinatier P., Levasseur A. LiNiVO4-promising thin films for use as anode material in microbatteries. J. Power Sources, 2003, vol. 119–121, pp. 101–105.

6. Reddy M. V., Levasseur A. Sputtered lithium nickel vanadium oxide (LiNiVO4) films: Chemical compositions, structural variations, target history, and anodic / cathodic electrochemical properties. J. Electroanal. Chem., 2010, vol. 639, pp. 27–35.

7. Julien C. M., Mauger A. Review of 5-V electrodes for Li-ion batteries: Status and trends. Ionics, 2013, vol. 19, pp. 951–988.

8. Fey G. T.-K., Li W., Dahn J. R. LiNiVO4: A 4.8 volt electrode material for lithium cells. J. Electrochem. Soc., 1994, vol. 141, pp. 2279–2282.

9. Prakash D., Masuda Y., Sanjeeviraja C. Synthesis and structure refinement studies of LiNiVO4 electrode material for lithium rechargeable batteries. Ionics, 2013, vol. 19, pp. 17–23.

10. Prakash D., Masuda Y., Sanjeeviraja C. Structural, electrical and electrochemical studies of LiCoVO4 cathode material for lithium rechargeable batteries. Powder Technol., 2013, vol. 235, pp. 454–459.

11. Qin M. L., Liu W. M., Liang S. Q., Pan A. Q. Facile synthesis of porous LiNiVO4 powder as high-voltage cathode material for lithium-ion batteries. Transactions of Nonferrous Metals Society of China (English Edition), 2016, vol. 26, pp. 3232–3237.

12. Kosova N. V. Soft mechanochemical synthesis of materials for lithium-ion batteries: Principles and applications. In: High-Energy Ball Milling: Mechanochemical Processing of Nanopowders. Ed. M. Sopicka-Lizer. Woodhead Publishing Limited, 2010, pp. 331–360.

13. Kosova N. V., Rezepova D. O., Slobodyuk A. B. Effect of annealing temperature on the structure and electrochemistry of LiVO3. Electrochim. Acta, 2015, vol. 167, pp. 75–83.

14. Kosova N. V., Vosel S. V., Anufrienko V. F., Vasenin N. T., Devyatkina E. T. Reduction processes in the course of mechanochemical synthesis of Li1 + xV3O8. J. Solid State Chem., 2001, vol. 160, pp. 444–449.

15. Cao X., Xie L., Zhan H., Zhou Y. Rheological phase synthesis and characterization of LiNiVO4 as a high voltage cathode material for lithium ion batteries. J. New Mater. Electrochem. Syst., 2008, vol. 11, pp. 193–198.

16. Han X., Tang W., Yi Z., Sun J. Synthesis, characterization and electrochemical performance of LiNiVO4 anode material for lithium-ion batteries. J. Appl. Electrochem., 2008, vol. 38, pp. 1671–1676.

17. Kulova T. L., Skundin A. M. Prostoy metod diagnostiki prichin degradatsii elektrodov pri tsiklirovanii litiy-ionnykh akkumulyatorov [A simple method for diagnosing the causes of electrode degradation when cycling lithium-ion batteries]. Elektrokhimicheskaya Energetika [Electrochemical energetics], 2011, vol. 11, no. 4, pp. 171–178 (in Russian).

18. Compound-Web Plus – compounds stored in the Fact inorganic pure substances database, 2014. Available at: (accessed: 10 July 2017).

19. Su D. S., Schlögl R. Thermal decomposition of divanadium pentoxide V2O5: Towards a nanocrystalline V2O3 phase. Catal. Lett., 2002, vol. 83, pp. 115–119.

Full Text (PDF):
(downloads: 341)