ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Vorob'eva K. A., Eliseeva S. N., Apraksin R. V., Kondrat'ev V. V. Cyclic voltammetry of electrodes based on LiMn2O4 with additive conducting polymer in water and organic electrolytes. Electrochemical Energetics, 2016, vol. 16, iss. 1, pp. 34-41. DOI: 10.18500/1608-4039-2016-16-1-34-41, EDN: YPTGLJ

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 166)
Language: 
Russian
Article type: 
Article
EDN: 
YPTGLJ

Cyclic voltammetry of electrodes based on LiMn2O4 with additive conducting polymer in water and organic electrolytes

Autors: 
Vorob'eva Kseniya Aleksandrovna, Institute of Chemistry, St.-Petersburg State University
Eliseeva Svetlana Nikolaevna, Institute of Chemistry, St.-Petersburg State University
Apraksin Rostislav Valer'evich, Institute of Chemistry, St.-Petersburg State University
Kondrat'ev Veniamin Vladimirovich, Institute of Chemistry, St.-Petersburg State University
Abstract: 

УДК 541.136

DOI:  https://doi.org/10.18500/1608-4039-2016-16-1-34-41

Electrochemical properties of the electrode based on lithium-manganese spinel (LiMn2O4), which were produced with conducting and binder additives using a conductive polymer poly-3,4-ethylenedioxythiophene/polystyrene sulfonate (PEDOT:PSS) with carboxymethylcellulose (CMC) were investigated by cyclic voltammetry in aqueous and organic solutions of lithium perchlorate. Values of specific capacitance of the cathode material and their dependence on potential sweep rate were obtained. A comparison of the functional characteristics of a standard composition of materials using the traditional binder of polyvinylidene fluoride (PVDF) and the modification composition using the conductive polymer dispersion was conducted. It is shown that the introduction of the conductive polymer into the cathode material lead to an increase of specific capacity (up to 10%) and improved stability of the material during the cycling.

Reference: 

1. Sycheva V. О., Churikov A. V. Litij-margancevye shpineli: puti povyshenija stabil'nosti i jenergoemkosti [Lithium-manganese spinels: ways of increase of stability and capacity]. Elektrokhimicheskaya Energetika [Electrochemical energetics], 2009, T. 9, no 4. pp. 175–187 (in Russian).
2. Makhonina E. V., Pervov V. S., Dubasova V. S. Oxide materials as positive electrodes of lithium-ion batteries. Russian Chemical Review, 2004, vol. 73, pp. 1075–1086. DOI: 10.1070/RC2004v073n10ABEH000896 (in Russian).
3. Tian L., Yuan A. Electrochemical performance of nanostructured spinel LiMn_2O_4 in different aqueous electrolytes. J. Power Sources, 2009, vol. 192, pp. 693–697. DOI: 10.1016/j.jpowsour.2009.03.002.
4. Li Z., Wang L., Li K., Xue D. LiMn_2O_4 rods as cathode materials with high rate capability and good cycling performance inaqueous electrolyte. J. Alloys Compd., 2013, vol. 580, pp. 592–597. DOI: 10.1016/j.jallcom.2013.07.116.
5. Zhu Q., Zheng S., Lu X., Wan Y., Chen Q., Yang J., Zhang L., Lu Z. Improved cycle performance of LiMn_2O_4 cathode material for aqueous rechargeable lithium battery by LaF_3 coating. J. Alloys Compd., 2016, vol. 654, pp. 384–391. DOI: 10.1016/j.jallcom.2015.09.085.
6. Shipper F., Aurbach D. Proshloe, Nastoiashchee I Budushchee Litii-Ionnykh Akkumuliatorov: Kratkii Obzor [Past, Present and Future of Li-ion batteries: a short review]. Elektrokhimiia [Electrochemistry], 2016, T. 52, no. 12, pp. 1229–1258. DOI: 10.7868/S0424857016120124 (in Russian).
7. Luan X., Guan D., Wang Y. Enhancing High-Rate and Elevated-Temperature Performances of Nano-Sized and Micron-Sized LiMn2O4 in Lithium-Ion Batteries with Ultrathin Surface Coatings. J. Nanosci. Nanotechnol., 2012, vol. 12, pp. 7113–7120. DOI: 10.1166/jnn.2012.6577.
8. Eliseeva S. N., Levin O. V., Tolstopjatova E. G., Alekseeva E. V., Apraksin R. V., Kondratiev V. V. New functional conducting poly-3, 4-ethylenedioxythiopene: polystyrene sulfonate/carboxymethylcellulose binder for improvement of capacity of LiFePO4-based cathode materials. Mater. Lett., 2015, vol. 161, pp. 117–119. DOI: 10.1016/j.matlet.2015.08.078.
9. Apraksin R. V., Eliseeva S. N., Tolstopjatova E. G., Rumyantsev A. M., Zhdanov V. V. High-rate performance of LiFe0.4Mn{0.6PO_4 cathode materials with poly(3,4-ethylenedioxythiopene): poly(styrene sulfonate)/carboxymethylcellulose. Mater. Lett., 2016, vol. 176, pp. 248–252. DOI: 10.1016/j.matlet.2016.04.106.
10. Bao S. J., Liang Y. Y., Li H. L. Synthesis and electrochemical properties of LiMn_2O_4 by microwave-assisted sol-gel method. Mater. Lett., 2005, vol. 59, pp. 3761–3765. DOI: 10.1016/j.matlet.2005.07.012
11. Hwang B. M., Kim S. J., Lee Y. W., Park H. C., Kim D. M., Park K. W. Truncated octahedral LiMn_2O_4 cathode for high-performance lithium-ion batteries. Mater. Chem. Phys., 2015, vol. 158, pp. 138–143. DOI: 10.1016/j.matchemphys.2015.03.052.
12. Wu X. M., Li X. H., Xiao Z. B., J. Liu, Bin Yan W., Ma M. Y. Synthesis and characterization of LiMn_2O_4 powders by the combustion-assisted sol–gel technique. Mater. Chem. Phys., 2004, vol. 84, pp. 182–186. DOI: 10.1016/j.matchemphys.2003.11.020.
13. Lee J. W., Pyun S. I. Investigation of lithium transport through LiMn_2O_4 film electrode in aqueous LiNO_3 solution. Electrochim. Acta, 2004, vol. 49, pp. 753–761. DOI: 10.1016/j.electacta.2003.09.029.

Received: 
03.03.2016
Accepted: 
03.03.2016
Published: 
25.03.2016