For citation:
Korchagin O. V., Tarasevich M. R. Current-producing reactions in fuel cells with proton-conducting and anion-conducting electrolytes. Electrochemical Energetics, 2014, vol. 14, iss. 3, pp. 117-132. DOI: 10.18500/1608-4039-2014-14-3-117-132, EDN: TQCJOJ
Current-producing reactions in fuel cells with proton-conducting and anion-conducting electrolytes
Features of current generation processes in MEA of hydrogen-air (oxygen) fuel cells with proton-conducting (acidic) and anion-conducting (alkaline) solid polymer electrolytes were compared. Certain parameters of electrode reactions and characteristics of electrolytes and interaction effects of MEA’s components in FC operation and also destabilizing factors which deriving direct from current flow as well as from presence of impurities in the fuel and oxidant were discussed. Advantages and disadvantages of using acid and alkaline electrolytes and also state of the art in the fuel cells based on them were characterized.
1. The fuel cell Industry Review, 2013. Available at: http://www.fuelcelltoday.com/analysis/analyst-views/2013/13-10-09-the-fu... (accessed 05.10.2013).
2. Merle G., Wessling M., Nijmeijer K. Anion exchange membranes for alkaline fuel cells: A review. Journal Membrane Science, 2011, vol. 377, no. 1–2, pp. 1–35. doi: 10.1016/j.memsci.2011.04.043.
3. More K. L., Reeves K. S. Presentation on Microstructural Characterization Of PEM Fuel Cell MEAs for the 2005 Hydrogen, Fuel Cells \& Infrastructure Technologies Program Annual Review held in Arlington, VA May 23–26, 2005. Available at: http://www.hydrogen.energy.gov/pdfs/review05/fc39\more.pdf.
4. Shao M. Electrocatalysis in Fuel Cells. A Non- and Low- Platinum Approach. London, Springer-Verlag, 2013, 745 p.
5. Huang T.-H., Shen H.-L., Jao T.-C., Weng F.-B., Su A. Ultra-low Pt loading for proton exchange membrane fuel cells by catalyst coating technique with ultrasonic spray coating machine. Intern. J. Hydrogen Energy, 2012, vol. 37, no. 18, pp. 13872–13879. doi: 10.1016/j.ijhydene.2012.04.108.
6. Yu Y., Li H., Wang H., Yuan X.-Z., Wang G., Pan M. A review on performance degradation of proton exchange membrane fuel cells during startup and shutdown processes : Causes, consequences, and mitigation strategies. J. Power Sources, 2012, vol. 205, pp. 10–23. doi: 10.1016/j.jpowsour.2012.01.059.
7. Borup R., Meyers J., Pivovar B., Kim Y. S., Mukundan R., Garland N., Myers D., Wilson M., Garzon F., Wood D., Zelenay P., More K., Stroh K., Zawodzinski T., Boncella J., McGrath J. E., Inaba M., Miyatake K., Hori M., Ota K., Ogumi Z., Miyata S., Nishikata A., Siroma Z., Uchimoto Y., Yasuda K., Kimijima K.-i., Iwashita N. Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation Chemical Reviews, 2007, vol. 107, no. 10, pp. 3904–3951. doi: 10.1021/cr050182l.
8. Zamel N., Li X. Effect of contaminants on polymer electrolyte membrane fuel cells. Progress in Energy and Combustion Science, 2011, vol. 37, no. 3, pp. 292–329. doi: 10.1016/j.pecs.2010.06.003.
9. Avakov V. B., Aliev A. D., Beketaeva L. A., Bogdanovskaya V. A., Burkovskii E. V., Datskevich A. A., Ivanitskii B. A., Kazanskii L. P., Kapustin A. V., Korchagin O. V., Kuzov A. V., Landgraf I. K., Lozovaya O. V., Modestov A. D., Stankevich M. M., Tarasevich M. R., Chalykh A. E. Study of degradation of membrane-electrode assemblies of hydrogen-oxygen (air) fuel cell under the conditions of life tests and voltage cycling. Rus. J. Electrochem., 2014, vol. 50, no. 8, pp. 773–788. doi: 10.1134/S1023193514080011.
10. Tarasevich M. R., Korchagin O. V. Rapid diagnostics of characteristics and stability of fuel cells with proton-conducting electrolyte. Rus. J. Electrochem., 2014, vol. 50, no. 8, pp. 737–750. doi: 10.1134/S1023193514080126.
11. Li Y. S., Zhao T. S., Yang W. W. Measurements of water uptake and transport properties in anion-exchange membranes. Intern. J. Hydrogen Energy, 2010, vol. 35, no. 11, pp. 5656–5665. doi: 10.1016/j.ijhydene.2010.03.026.
12. Nasef M. M., Aly A. A. Water and charge transport models in proton exchange membranes : An overview. Desalination, 2012, vol. 287, pp. 238–246. doi: 10.1016/j.desal.2011.06.054.
13. Antolini E., Gonzalez E. R. Alkaline direct alcohol fuel cells. J. Power Sources, 2010, vol. 195, no. 11, pp. 3431–3450. doi: 10.1016/j.jpowsour.2009.11.145.
14. Spravochnik himika: v 6 t. Redkol.: B. P. Nikol’skij (gl. red.) [i dr.]. Vtoroe izd., pererab. i dop. [Chemist Hand-Book: in 6 vols., B. P. Nikoljsky (editor in chief) [et al.]. 2nd ed.]. Moscow, Leningrad, Chemistry Publ., 1964, vol. 3, pp. 806–807 (in Russian).
15. Varcoe J. R., Slade R. C.T., Wright G. L., Chen Y. Steady-State dc and Impedance Investigations of H2/O2 Alkaline Membrane Fuel Cells with Commercial Pt/C, Ag/C, and Au/C Cathodes. J. Phys. Chem. B, 2006, vol. 110, no. 42, pp. 21041–21049. doi: 10.1021/jp064898b.
16. Pleskov Yu. V., Filinovskii V. Yu. Vrashhajushhijsja diskovyj jelektrod [Rotating Disk Electrode], Moscow, Nauka Publ., 1972, 345 p.
17. Li H., Lee K., Zhang J. Electrocatalytic H2 Oxidation Reaction (in PEM Fuel Cell Electrocatalysts and Catalyst Layers). Springer-Verlag London Limited, 2008, pp. 135–164.
18. Sheng W., Gasteiger H. A., Shao-Horn Y. Hydrogen Oxidation and Evolution Reaction Kinetics on Platinum: Acid vs Alkaline Electrolytes. J. Electrochem. Society, 2010, vol. 157, no. 11,. pp. 1529–1536. doi: 10.1149/1.3483106.
19. Tarasevich M. R., Korchagin O. V. Electrocatalysis and pH (a review). Rus. J. Electrochem., 2013, vol. 49, no. 7, pp. 676–695. doi: 10.1134/S102319351307015X.
20. Petrii O. A., Tsirlina G. A. Electrocatalytic activity prediction for hydrogen electrode reaction : intuition, art, science. Electrochimica Acta, 1994, vol. 39, no. 11–12, pp. 1739–1747. doi: 10.1016/0013-4686(94)85159-X.
21. Bagotzky V. S., Osetrova N. V. Investigations of hydrogen ionization on platinum with the help of micro-electrodes. J. Electroanalytical Chem. and Interfacial Electrochemistry, 1973, vol. 43, no. 2, pp. 233–249. doi: 10.1016/S0022-0728(73)80494–2.
22. Schmidt T. J., Markovic N. M., Ross P. N. Temperature dependent surface electrochemistry on Pt single crystals in alkaline electrolytes: Part 2. The hydrogen evolution/oxidation reaction. J. Electroanalytical Chem., 2002, vol. 524, no. 3, pp. 252–260. doi: 10.1016/S0022-0728(02)00683–6.
23. Floner D., Lamy C., Leger J.-M. Electrocatalytic oxidation of hydrogen on polycrystal and single-crystal nickel electrodes. Surface Science, 1990, vol. 234, no. 8, pp. 87–97. doi: 10.1016/0039-6028(90)90668-X.
24. Trasatti S. Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions. J. Electroanalytical Chem. and Interfacial Electrochemistry, 1977, vol. 39, no. 1, pp. 163–184. doi: 10.1016/S0022-0728(72)80485–6.
25. Martin S., Garcia-Ybarra P. L., Castillo J. L. High platinum utilization in ultra-low Pt loaded PEM fuel cell cathodes prepared by electrospraying. Intern. J. Hydrogen Energy, 2010, vol. 35, no. 19, pp. 10446–10451. doi: 10.1016/j.ijhydene.2010.07.069.
26. Innocente A. F., \Angelo A. C. D. Electrocatalysis of oxidation of hydrogen on platinum ordered intermetallic phases: Kinetic and mechanistic studies. J. Power Sources, 2006, vol. 162, no. 1, pp. 151–159. doi: 10.1016/j.jpowsour.2006.06.057.
27. Li B., Qiao J., Yang D., Zheng J., Ma J., Zhang J., Wang H. Synthesis of a highly active carbon-supported Ir–V/C catalyst for the hydrogen oxidation reaction in PEMFC. Electrochimica Acta, 2009, vol. 54, no. 24, pp. 5614–5620. doi: 10.1016/j.electacta.2009.04.065.
28. Li B., Higgins D. C., Yang D., Lin R., Yu Z., Ma J. New non-platinum Ir–V–Mo electro-catalyst, catalytic activity and CO tolerance in hydrogen oxidation reaction. Int. J. Hydrogen Energy, 2012, vol. 37, no. 24, pp. 18843–18850. doi: 10.1016/j.ijhydene.2012.09.165.
29. M. Tang, Hahn C., Ng D., Jaramillo T. F. Non-Noble Electrocatalysts for Alkaline Hydrogen Evolution and Oxidation. 224th ECS Meeting Abstracts, 2013, Abs. 2275. Available at: http://ma.ecsdl.org/content/MA2013-02/35/2275.full.pdf+html (accessed 05.08.2014).
30. Sheng W., Bivens A. P., Myint M., Zhuang Z., Chen J. G., Yan Y. Non-Precious Metal Catalysts for Hydrogen Oxidation Reaction in Alkaline Electrolytes. 224th ECS Meeting Abstracts, 2013, Abs.\# 1367 Available at: http://ma.ecsdl.org/content/MA2013-02/15/1367.full.pdf+html (accessed 05.08.2014).
31. Lu S., Pan J., Huang A., Zhuang L., Lu J. Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts. Proceedings of the National Academy of Sciences of the United States of America, 2008, vol. 105, no. 52, pp. 20611–20614. doi: 10.1073/pnas.0810041106.
32. Hu Q., Li G., Pan J., Tan L., Lu J., Zhuang L. Alkaline polymer electrolyte fuel cell with Ni-based anode and Co-based cathode. Int. J. Hydrogen Energy, 2013, vol. 38, no. 36, pp. 16264–16268. doi: 10.1016/j.ijhydene.2013.09.125.
33. Takahashi H., Takeguchi T., Nakamura A., Yamanaka T., Ueda W. Performance of Fe-Co-Ni/C Anode Catalyst for Fuel-Flexible Alkaline Fuel Cell. 220th ECS Meeting Abstracts, 2011, Abs.\# 1017 Available at: http://ma.ecsdl.org/content/MA2011-02/16/1017.full.pdf+html (accessed 05.08.2014).
34. Juzhanina A. V., Luk'janicheva V. I., Shumilova N. A., Bagockij V. S. Issledovanie mehanizma katodnogo vosstanovlenija kisloroda na gladkoj anodno-katodno obrabotannoj platine v shhelochnom rastvore [Investigation of mechanism of cathodic reduction of oxygen on smooth anode-cathode-treated platinum in alkaline solution]. Elektrochim., 1970, vol. 6, no. 7, pp. 1054–1057.
35. Gasteiger H. A., Paulus U. A., Shmidt A. J., Behm R. J. Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study. J. Electroanalytical Chem., vol. 495, no. 2, pp. 134–145. doi: 10.1016/S0022-0728(00)00407–1.
36. Norskov J. K., Rosseisi J., Logadottic A., Lidqvist L., Kitchin J. R., Bligaard T., Jonsson H. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J. Phys. Chem. B, 2004, vol. 108, no. 46, pp. 17886–17892. doi: 10.1021/jp047349j.
37. Sidik R. A., Anderson A. B. Density functional theory study of O2 electroreduction when bonded to a Pt dual site. J. Electroanalytical Chem., 2002, vol. 528, no. 1–2, pp. 69–76. doi: 10.1016/S0022-0728(02)00851–3.
38. Anderson A. B., Cai Y., Sidik R. A., Kang D. B. Advancements in the local reaction center electron transfer theory and the transition state structure in the first step of oxygen reduction over platinum. J. Electroanalytical Chem., 2005, vol. 580, no. 1, pp. 17–22. doi: 10.1016/j.jelechem.2005.03.009.
39. Gottesfeld S. Electrocatalysis of Oxygen Reduction in Polymer Electrolyte Fuel Cells: A Brief History and a Critical Examination of Present Theory and Diagnostics in Fuel Cell Catalysis A Surface Science Approach, New York, John Wiley \& Sons, Inc., 2009, pp. 1–30.
40. Tarasevich M. R., Sadkowski A., Yeager E. Oxygen electrochemistry in Comprehensive Treatise of Electrochem., 1983, New York, Plenum Press, Chap. 6, pp. 301–398.
41. Tarasevich M. R., Hrushheva E. I. Mechanism and kinetics of electrochemical reduction of oxygen on metal electrodes. Kinetika slozhnyh jelektrohimicheskih reakcij [Kinetics of complex electrochemical reactions]. Moskow, Nauka Publ., 1981, pp. 104–158 (in Russian).
42. Yu P., Pemberton M., Plasse P. PtCo/C cathode catalyst for improved durability in PEMFCs. J. Power Sources, 2005, vol. 144, no. 1, pp. 11–20. doi: 10.1016/j.jpowsour.2004.11.067.
43. Sakamoto R., Omichi K., Furuta T., Ichikawa M. Effect of high oxygen reduction reaction activity of octahedral PtNi nanoparticle electrocatalysts on proton exchange membrane fuel cell performance. J. Power Sources, 2014, vol. 269, no. 1, pp. 117–123. doi: 10.1016/j.jpowsour.2014.07.011.
44. Avakov V. B., Bogdanovskaya V. A., Ivanitskii B. A., Kapustin A. V., Kuzov A. V., Landgraf I. K., Modestov A. D., Radina M. V., Stankevich M. M., Tarasevich M. R., Tripachev O. V. Characteristics of membrane-electrode assemblies of hydrogen-air fuel cells with PtCoCr/C catalyst, Rus. J. Electrochem., 2014, Vol. 50. pp 656–668. doi: 10.1134/S1023193514070040.
45. Ng J. W. D., Gorlin Y., Nordlund D., Jaramillo T. F. Nanostructured Manganese Oxide Supported onto Particulate Glassy Carbon as an Active and Stable Oxygen Reduction Catalyst in Alkaline-Based Fuel Cells. J. Electrochem. Society, 2014, vol. 161, no. 7, pp. D3105–3112. doi: 10.1149/2.014407jes.
46. Saito M., Takakuwa T., Kenko T., Daimon H., Tasaka A., Inaba M., Shiroishi H., Hatai T., Kuwano J. New Oxygen Reduction Electrocatalysts Based on Lanthanum Manganite Oxides and Their Application to the Cathode of AEMFCs. ECS Transactions, 2013, vol. 58, no. 1,. pp. 1335–1345. doi: 10.1149/05801.1335ecst.
47. Lima F. H. B., Castro J. F. R., Ticianelli E. Silver-cobalt bimetallic particles for oxygen reduction in alkaline media. J. Power Sources, 2006, vol. 161, no. 2, pp. 806–812. doi: 10.1016/j.jpowsour.2006.06.029.
48. Jiang L., Hsu A., Chu D., Chen R. A highly active Pd coated Ag electrocatalyst for oxygen reduction reactions in alkaline media. Electrochimica Acta, 2010, vol. 55, no. 15, pp. 4506–4511. doi: 10.1016/j.electacta.2010.02.094.
49. Guo J., Zhou J., Chu D., Chen R. Tuning the Electrochemical Interface of Ag/C Electrodes in Alkaline Media with Metallophthalocyanine Molecules. J. Phys. Chem. C, 2013, vol. 117, no. 8, pp. 4006–4017. doi: 10.1021/jp310655y.
50. He C., Desai S., Brown G., Bollepalli S. PEM Fuel Cell Catalysts: Cost, Performance, and Durability. Electrochem. Society Interface, 2005, vol. 14, no. 3, pp. 41–44. Available at: http://www.electrochem.org/dl/interface/fal/fal05/IF8-05\Pg41–44.pdf (accessed 05.08.2014).
51. Darling R. M., Meyers J. P. Kinetic Model of Platinum Dissolution in PEMFCs. J. Electrochem. Society, 2003, vol. 150, no. 11, pp. A1523–1527. doi: 10.1149/1.1613669.
52. Perez-Alonso F. J., Elkj\aer C. F., Shim S. S., Abrams B. L., Stephens I. E., Chorkendorff I. Identical locations transmission electron microscopy study of Pt/C electrocatalyst degradation during oxygen reduction reaction. J. Power Sources, 2011, vol. 196, no. 15, pp. 6085–6091. doi: 10.1016/j.jpowsour.2011.03.064.
53. Meier J. C., Katsounaros I., Galeano C., Bongard H. J., Topalov A. A., Kostka A., Karschin A., Schuth F., Mayrhofer K. J.J. Stability investigations of electrocatalysts on the nanoscale. Energy \& Environmental Science, 2012, vol. 5, no. 11, pp. 9319–9330. doi: 10.1039/C2EE22550F.
54. Komanicky V., Chang K. C., Menzel A., Markovic N. M., You H., Wang X., Myers D. Stability and Dissolution of Platinum Surfaces in Perchloric Acid. J. Electrochem. Society, 2006, vol. 153, no. 8, pp. B446–451. doi: 10.1149/1.2214552.
55. Darling M. Kinetic Model of Platinum Dissolution in PEMFCs. J. Electrochem. Society, 2003, vol. 150, no. 11, pp. A1523–1527. doi: 10.1149/1.1613669.
56. Sugawara Y., Okayasu T., Yadav A. P., Nishikata A., Tsuru T. Dissolution Mechanism of Platinum in Sulfuric Acid Solution. J. Electrochem. Society, 2012, vol. 159, no. 11, pp. F779–786. doi: 10.1149/2.017212jes.
57. Matsumoto M., Miyazaki T., Imai H. Oxygen-Enhanced Dissolution of Platinum in Acidic Electrochemical Environments, J. Phys. Chem. C, 2011, vol. 115, no. 22, P. 11163–11169. doi: 10.1021/jp201959h.
58. Jayasankar B., Harvey D., Karan K. Platinum Degradation Model in the Presence of Oxygen. 224th ECS Meeting Abstracts, 2013. Abs\#1557. Available at: http://ma.ecsdl.org/content/MA2013-02/15/1557.full.pdf.
59. Kongkanand A., Ziegelbauer J. M. Surface Platinum Electrooxidation in the Presence of Oxygen, J. Phys. Chem. C, 2012, vol. 116, pp. 3684–3693. doi: 10.1021/jp211490a.
60. Bett J. A. S., Kinoshita K., Stonehart P. Crystallite growth of platinum dispersed on graphitized carbon black: II. Effect of liquid environment. Journal Catalysis, 1976, vol. 41, no. 1, pp. 124–133. doi: 10.1016/0021-9517(76)90207–4.
61. Hartl K., Hanzlik M., Arenz M. IL-TEM investigations on the degradation mechanism of Pt/C electrocatalysts with different carbon supports. Energy \& Environmental Science, 2011, vol. 4, no. 1,. pp. 234–238. doi: 10.1039/C0EE00248H.
62. Tang H., Qi Z., Ramani M., Elter J. F. PEM fuel cell cathode carbon corrosion due to the formation of air/fuel boundary at the anode. J. Power Sources, 2006, vol. 158, no. 2, pp. 1306–1312. doi: 10.1016/j.jpowsour.2005.10.059.
63. Shao Y., Yin G., Gao Y. Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell. J. Power Sources, 2007, vol. 171, no. 2, pp. 558–566. doi: 10.1016/j.jpowsour.2007.07.004.
64. Liu H., Gasteiger H. A., Laconti A., Zhang J. Factors Impacting Chemical Degradation Of Perfluorinated Sulfonic Acid Ionomers Operating Conditions and Catalyst Impact on Membrane Degradation. ECS Transactions, 2006, vol. 1, no. 8, pp. 283–293. doi: 10.1149/1.2214561.
65. Mittal V. O., Kunz H. R., Fenton J. M. Is H2O2 Involved in the Membrane Degradation Mechanism in PEMFC. Electrochemical and Solid-State Letters, 2006, vol. 9, no. 6, pp. A299–302. doi: 10.1149/1.2192696.
66. Schiraldi D. A., Savant D., Zhou C. Chemical Degradation of Membrane Polymer Model Compounds under Simulated Fuel Cell Conditions. ECS Transactions, 2010, vol. 33, no. 1, pp. 883–888. doi: 10.1149/1.3484581.
67. Teranishi K., Kawata K., Tsushima S., Hirai S. Degradation Mechanism of PEMFC under Open Circuit Operation. Electrochemical and Solid-State Letters, 2006. vol. 9, no. 10, pp. A475–477. doi: 10.1149/1.2266163.
68. Pozio A., Silva R. F., Francisco M. D., Giorgi L. Nafion degradation in PEFCs from end plate iron contamination. Electrochimica Acta, 2003, vol. 48, no. 11, pp. 1543–1549. doi: 10.1016/S0013-4686(03)00026–4.
69. Ghassemzadeh L., Kreuer K.-D., Maier J., Muller K. Chemical Degradation of Nafion Membranes under Mimic Fuel Cell Conditions as Investigated by Solid-State NMR Spectroscopy, J. Phys. Chem. C, 2010, vol. 114, no. 34, pp. 14635–14645. doi: 10.1021/jp102533v.
70. Alentiev A., Kostina J., Bondarenko G. Chemical aging of Nafio : FTIR study. Desalination, 2006, vol. 200, no. 1–3, pp. 32–33. doi: 10.1016/j.desal.2006.03.231.
71. Inaba M., Yamada H., Umebayashi R., Sugishita M., Tasaka A. Membrane Degradation in Polymer Electrolyte Fuel Cells under Low Humidification Conditions. Electrochem., 2007, vol. 75, no. 2, pp. 207–212. doi: 10.5796/electrochemistry.75.207.
72. Ohma A., Suga S., Yamamoto S., Shinohara K. Phenomenon Analysis of PEFC for Automotive Use(1) Membrane Degradation Behavior During OCV Hold Test. ECS Transactions,. 2006, vol. 3, no. 1, pp. 519–529. doi: 10.1149/1.2356173.
73. Ehteshami S. M. M., Chan S. H. A review of electrocatalysts with enhanced CO tolerance and stability for polymer electrolyte membarane fuel cells. Electrochimica Acta, 2013, vol. 93, no. 3, pp. 334. doi: 10.1016/j.electacta.2013.01.086.
74. Matsui Y., Saito M., Tasaka A., Inaba M. Influence of Carbon Dioxide on the Performance of Anion-Exchange Membrane Fuel Cells. ECS Transactions, 2010, vol. 25, no. 13, pp. 105–110. doi: 10.1149/1.3315177.
75. Grew K. N., Ren X., Chu D. Effect of CO2 on the Alkaline Membrane Fuel Cell. ECS Transactions, 2011, vol. 41, no. 1, pp. 1979–1985. doi: 10.1149/1.3635727.
76. Vega A., Smith S., Mustain W. E. Hydrogen and Methanol Oxidation Reaction in Hydroxide and Carbonate Alkaline Media. J. Electrochem. Society, 2011, vol. 158, no. 4, pp. B349–354. doi: 10.1149/1.3543918.
77. Lan R., Tao S. Direct Ammonia Alkaline Anion-Exchange Membrane Fuel Cells. Electrochem. and Solid-State Letters, 2010, vol. 13, no. 8, pp. B83–86. doi: 10.1149/1.3428469.
78. Tarasevich M. R., Zhutaeva G. V., Bogdanovskaya V. A., Reznikova L. A., Radina M. V., Kazanskii L. P. Comparison of electrocatalytic and corrosion characteristics of monoplatinum and trimetallic (PtCoCr) systems. Protection Metals and Physical Chemistry Surfaces, 2011, vol. 47, no. 7, pp. 895–906. doi: 10.1134/S2070205111070161.
79. Wang X., Li W., Chen Z., Waje M., Yan Y. Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell. J. Power Sources, 2006, vol. 158, no. 1, pp. 154–159. doi: 10.1016/j.jpowsour.2005.09.039.
80. Waje M. M., Li W., Chen Z., Yan Y. Durability Investigation of Cup-Stacked Carbon Nanotubes Supported Pt as PEMFC Catalyst. ECS Transactions, 2006, vol. 3, no. 1, pp. 677–683. doi: 10.1149/1.2356188.
81. Chhina H., Campbell S., Kesler O. An oxidation-resistant indium tin oxide catalyst support for proton exchange membrane fuel cells. J. Power Sources, 2006, vol. 161, no. 2, pp. 893–900. doi: 10.1016/j.jpowsour.2006.05.014.
82. Ioroi T., Senoh H., Yamazaki S. I., Siroma Z., Fujiwara N., Yasuda K. Stability of Corrosion-Resistant Magn\'eli-Phase Ti4O7-Supported PEMFC Catalysts at High Potentials. J. Electrochem. Society, 2008, vol. 155, no. 4, pp. B321–326. doi: 10.1149/1.2833310.
83. Endoh E. Development of Highly Durable PFSA Membrane and MEA for PEMFC Under High Temperature and Low Humidity Conditions. ECS Transactions, 2008, vol. 16, no. 2, pp. 1229–1240.
84. Coms F. D. Mitigation of Perfluorosulfonic Acid Membrane Chemical Degradation Using Cerium and Manganese Ions. ECS Transactions, 2008, vol. 16, no. 2, pp. 1735–1747. doi: 10.1149/1.2982015.
85. Gubler L., Koppenol W. H. Kinetic Simulation of the Chemical Stabilization Mechanism in Fuel Cell Membranes Using Cerium and Manganese Redox Couples. J. Electrochem. Society, 2012, vol. 159, no. 2, pp. B211–218. doi: 10.1149/2.075202jes.