ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Burashnikova M. M., Inozemtseva E. V., Talanov S. E., Kazarinov I. A. Corrosion layer conductivity of the positive grids in lead-acid batteries as a function of lead alloy composition. Electrochemical Energetics, 2009, vol. 9, iss. 4, pp. 209-?. DOI: 10.18500/1608-4039-2009-9-4-209-217, EDN: LDIETJ

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Language: 
Russian
Article type: 
Article
EDN: 
LDIETJ

Corrosion layer conductivity of the positive grids in lead-acid batteries as a function of lead alloy composition

Autors: 
Burashnikova Marina Mikhailovna, Saratov State University
Inozemtseva E. V., Saratov State University
Talanov S. E., Saratov State University
Kazarinov Ivan Alekseevich, Saratov State University
Abstract: 

The properties of a contact corrosion layer (ККС), which appears on border of (preliminary oxidized) lead alloys with products of their anode oxidation and corrosion, were investigated by methods of impedance spectroscopy and on speed oxidation of ions Fe (II). It was found that the contact corrosion layers that appear on lead-antimony alloys have higher electronic conductivity. Alloying by tin and cadmium cause increase of conductivity contact corrosion layer (CCL) that appears on low-antimony lead alloys. Essential increase of conductivity CCL that appear on lead-calcium-tin alloys is caused by alloying addition of silver (>= 0.1 мас. % Ag).

Reference: 

1. Bagshaw N., Mayer M. ALABC Program Pb-001. Final Rep. Intern. Lead-zinc Research Organiz., Inc. Research Triangle, NC, USA. 1995. 72 p.
2. Каменев Ю. Б., Киселевич А. В., Остапенко Е. И., Cкачков Ю. Б. // Журн. прикл. химии. 2002. Т. 75, вып. 4. С. 562–565.
3. Valve-regulated Lead-Acid Batteries/ Eds. D. A.J. Rand, P. T. Moseley, J. Garche, C. D. Parker. ELSEVIER, 2004.
4. Ball R. J., Kurian R., Evans R., Stevens R. // J. Power Sources. 2002. Vol. 111. Р. 23–38.
5. Pavlov D. // J. Power Sources. 1995. Vol. 53. Р. 9–21.
6. Lappe F. // J. Phys. Chem. Solids. 1962. Vol. 23. P. 1563–1572.
7. Каменев Ю. Б., Остапенко Ю. Б., Козерог К. В., Скачков Ю. В. // Журн. прикл. химии. 2002. Т. 47, вып. 6. С. 949–952.
8. Hollenkamp A. F., Constanti K. K., Koop M. J., Apгteanu L., Calabek M., Micka K. // J. Power Sources. 1994. Vol. 48. Р. 195–215.
9. Prengaman R. D. // J. Power Sources. 1997. Vol. 67. Р. 267–278.
10. Иноземцева Е. В., Бурашникова М. М., Казаринов И. А. // Электрохим. энергетика. 2007. Т. 7, № 4. С. 196–199.
11. Bagshaw N. E. / Eds. T. Keily, B. W. Baxter, Power Sources 12, Research and Development in Non-mechanical Electrical Power Sources, International Power Sources Symposium Committee, Leatherhead, UK, 1988. P. 113–129.
12. Macdonald J. R. // J/ Electroanal. Chem. 1987. Vol. 223. P. 25.
13. Simon P., Bui N., Pebere N., Dabosi F. // J. Power Sources. 1995. Vol. 53. P. 163–173.
14. Mattesco P., Bui N., Simon P., Albert L. // J. Power Sources. 1997. Vol. 64. P. 21–27.
15. Bui N., Mattesco P., Simon P., Steinmetz J., Rocca E. // J. Power Sources. 1997. Vol. 67. P. 61–67.
16. Bagshaw N. E. // J. Power Sources. 1995. Vol. 53. P. 25–30.

Received: 
30.11.2009
Accepted: 
30.11.2009
Published: 
25.12.2009