ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Kuleshov N. V., Grigor'ev S. A. Catalytic composition and fuel influence on anodic processes characteristics of solid polymer electrolyte fuel cells. Electrochemical Energetics, 2008, vol. 8, iss. 1, pp. 33-39. DOI: 10.18500/1608-4039-2008-8-1-33-39, EDN: JVPALX

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Language: 
Russian
Article type: 
Article
EDN: 
JVPALX

Catalytic composition and fuel influence on anodic processes characteristics of solid polymer electrolyte fuel cells

Autors: 
Kuleshov Nikolai Vasil'evich, Moscow Power Engineering Institute
Grigor'ev Sergei Aleksandrovich, National Research Center "Kurchatov Institute"
Abstract: 

It was studied an influence of prior carbon treatment (temperature and gas conditions, mass content of waterproofing agent) on activity of platinum catalyst, synthesized on disperse carbon carrier. It was shown that characteristics of anodic processes depend on quantity of solid polymer electrolyte in catalytic composition. Optimal content of ion exchange polymer under varied degree of carbon carrier waterproofing (used for synthesis of platinum catalyst) is not equal. In a case of platinum catalyst synthesized on a base of carbon carrier with the addition of waterproofing agent (10 mass %), the highest current density of fuel cell functioning on pure oxygen corresponds to 15-20 mass % of polymer content in a layer and in a case of air – 10-15 mass %. Impurity of carbonic gas in anodic fuel leads to decrease of current density on fuel cell withdrawal not only because of partial pressure decrease. The reason of parameter worsening is partial platinum poisoning with CO, appearing after CO2 reduction.

Key words: 
Reference: 

1. Joensen F., Rostrup-Nielsen J. R. // J. Power Sources. 2002. V. 105. P. 195.
2. Stonehart P., Ross P. N. // Catal. Rev. Sci. Eng. 1975. V. 12, № (1).
3. Ralph T. R., Hogarth M. P., Thompsett D., Gascoyne J. M. // Fuell Cell Seminar Extended Abstr. San Diego, CA, 1994. P. 199.
4. Ralph T. R., Hogarth M. P. // Platinum Metals Rev. 2002. V. 46, № (3). P. 117.
5. Cmara G. F., Ticianelli E. A. Makerjee S., Lee S. L., McBreen J. // J. Electrochem. Soc. 2002. V. 149. P. A 748.
6. Тарасевич М. Р., Богдановская В. А., Графов Б. М., Загудаева Н. М., Рыбалка К. В., Капустин А. В., Колбановский Ю. А. // Электрохимия. 2005. Т. 41, № 7. С. 840.
7. Бурштейн Р. Х., Тарасевич М. Р., Загудаева Н. М., Вилинская В. С. // Электрохимия. 1974. Т. 10. С. 1094.
8. Kinoshita K. // Carbon. Electrochemical and Physicochemical Properties. N. Y.: Wiley, 1988. V. 1. P. 86.
9. Коровин Н. В. Топливные элементы и электрохимические энергоустановки. М.: Изд-во Моск. энерг. ин-та, 2005.
10. Jensen J. O., Li Q., He r // Hydrogen Power Theoretical and Engineering Solutions / Eds. M. Marini, G. Spazzafumo. Padova: Servizi Grafici Editoriali snc., 2003. P. 675.
11. Cameron D. S. // Platinum Metals Rev. 2004. V. 48, № (1). P. 32.

Received: 
28.02.2008
Accepted: 
28.02.2008
Published: 
31.03.2008