Analysis of the Influence of the Cathodic Polarization Value on the Amount of Hydrogen Sorption of Al-Sm with the Alloy of Electrochemical Measurements

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).

The effect of cathodic polarization on the rate of hydrogen sorption from an aqueous organic electrolyte on an Al-Sm alloy using the potentiostatic and potentiodynamic methods were studied. The obtained data allowed us to calculate the diffusion-kinetic characteristics of this process, such as the interstitial constant, diffusion constant $C_{\text{Н}}\!\!\sqrt{D}$, constant current iconst, diffusion coefficient D and adsorption of hydrogen atoms G. The number of nuclei decreases, but their mass and radius increase in the potential range from –2.0 V to –2.4 V. The adsorption of hydrogen on the surface increases; which confirms that predominance of the discharge of hydrogen atoms occurs at more negative potentials according to the recombination mechanism.


1. Tarasov B. P., Burnasheva V. V., Lotockij M. V., Yartys’ V. A. Methods of water storage and the possibility of using metal hydrides. Alternative Energy and Ecology, 2005, no. 12, pp. 14–37 (in Russian).

2. Beloglazov C. M. Navodorozhivanie metalla pri elektrohimicheskih processah [Hydrogenation of metal during electrochemical processes]. Leningrad, Izd-vo Leningr un-ta, 1974. 312 p. (in Russian).

3. Kuznecov V. V., Haldeev G. V., Kichigin V. I. Navodorozhivanie metallov v elektrolitah [Hydrogenation of metals in electrolytes]. Moscow, Mashinostroenie Publ., 1993. 244 p. (in Russian).

4. Skundin A. M., Osetrova N. V. The use of aluminum in low-temperature chemical power sources. Electrochemical Energetics, 2005, vol. 5, no. 1, pp. 3–15 (in Russian).

5. Tai Yang, Qiang Li, Chunyong Liang, Xinghua Wang, Chaoqun Xia, Hongshui Wang, Fuxing Yin, Yanghuan Zhang. Microstructure and hydrogen absorption / desorption properties of Mg24Y3M (M = Ni, Co, Cu, Al) alloys. International Journal of Hydrogen Energy, 2018, vol. 43, no. 18, pp. 8877–8887. DOI:

6. Youn J. S., Phan D. T., Park C. M., Jeon K. J. Enhancement of hydrogen sorption properties of MgH2 with a MgF2 catalyst. International Journal of Hydrogen Energy, 2017, vol. 42, pp. 20120–20124. DOI:

7. Wang P. J., Fang Z. Z., Ma L. P., Kang X. D., Wang P. Effect of SWNTs on the reversible hydrogen storage properties of LiBH4–MgH2 composite. International Journal of Hydrogen Energy, 2008, vol. 33, pp. 5611–5616. DOI:

8. Yang J., Sudik A., Siegel D. J., Halliday D., Drews A., Carter R., Wolverton C., Lewis G. J., Sachtler A., Low J., Faheem S. A., Lesch D., Ozolinš V. A Self Catalyzing Hydrogen Storage. Angewandte Chemie, 2008, vol. 47, pp. 882–887. DOI:

9. Li L., Jiang G., Tian H., Wang Y. Effect of the hierarchical Co@C nanoflowers on the hydrogen storage properties of MgH2. International Journal of Hydrogen Energy, 2017, vol. 42, pp. 28464–28472. DOI:

10. Sadhasivama T., Kim H. T., Jung S., Roh S. H., Park J. H., Jung H. Y. Dimensional effects of nanostructured Mg/MgH2 for hydrogen storage applications. Renewable and Sustainable Energy Reviews, 2017, vol. 72, pp. 523–534. DOI:

11. Ren J., Musyoka N. M., Langmi H. W., Mathe M., Liao S. Current research trends and perspectives on materials-based hydrogen storage solutions : A critical review. International Journal of Hydrogen Energy, 2017, vol. 42, pp. 289–311. DOI:

12. Wood B., Stavila V., Poonyayant N., Heo T., Ray K. G., Klebanoff L. E., Udovic T. J., Lee J. R. I., Angboonpong N., Sugar J. D., Pakawatpanurut P. Nanointerface-driven reversible hydrogen storage in the nanoconfined Li–N–H system. Advanced Materials Interfaces, 2017, vol. 4, pp. 1600803 (7). DOI:

13. Farha O. K. Yazaydın A. O., Eryazici I., Malliakas C. D., Hauser B. G., Kanatzidis M. G., Nguyen S. T., Snurr R. Q., Hupp J. T. De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities. Nature Chemistry, 2010, vol. 2, pp. 944–948. DOI:

14. Gómez-Gualdrón D. A., Wang T. C., Garcı́a-Holley P., Sawelewa R. M., Argueta E., Snurr R. Q., Hupp J. T., Yildirim T., Farha O. K. Understanding volumetric and gravimetric hydrogen adsorption trade-off in metal–organic frameworks. ACS Applied Materials & Interfaces, 2017, vol. 9, pp. 33419–33428. DOI:

15. Ahmed A., Liu Y., Purewal J., Tran L. D., Wong-Foy A. G., Veenstra M., Veenstra M., Matzger A. J., Siegel D. J. Balancing gravimetric and volumetric hydrogen density in MOFs. Energy & Environmental Science, 2017, vol. 10, pp. 2459–2471. DOI:

16. Gavrilova N. V., Kudrjash V. I., Litvinov Yu. V., Harchenko E. L., Shalimov Yu. N. Evaluation of analytical possibilities methods for hydrogen determination in metals. Alternative Energy and Ecology, 2008, no. 8, pp. 10–26 (in Russian).

17. Madzhulo A. S., Gots I. Yu., Nechaev G. G., Kivokurcev A. Yu. Influence of magnetic field on dimensional effects of aluminumelectrodes modified by samarium and hydrogen, their electrochemicaland physical and chemical parameters. Perspektivnye materialy [Perspective materials], 2016, no. 1, pp. 24–31 (in Russian).

18. Fateev V. N., Alekseeva O. K., Korobcev S. V., Seregina E. A., Fateeva T. V., Grigor’ev A. S., Aliev A. Sh. Problems of hydrogen storage and storage. Kimya Problemlеri, 2018, no. 4, pp. 453–483. DOI: (in Russian).

19. Gots I. Yu., Klimov A. S., Madzhulo A. S., Nechaev G. G. Impact of the water ratio in the organic electrolyte on the diffusion-kinetic properties and structure of the alloy at the potentials of hydrogen sorption. Vestnik Saratovskogo gosudarstvennogo tekhnicheskogo universiteta, 2012, vol. 3, no. 1 (67), pp. 66–72.

20. Dobrotvorskij M. A., Elec D. I., Dulya M. S., Evard E. A., Vojt A. P., Gabis I. E. Ways to activate aluminum hydride. Vestnik Sankt-Peterburgskogo universiteta. Seriya 4. Fizika. Himiya, 2012, no. 1, pp.15–23.

Full Text (PDF):
(downloads: 62)