Cd|KOH|NiOOH

Zn|NH4CI|MnO2

Li|LiClO4|MnO2

Pb|H2SO4|PbO2

H2|KOH|O2

Lithium-ion capacitor with carbon-based electrodes

The present article considers work principle of lithium-ion capacitor (LIC) and methods of negative electrode pre-lithiation. The effect of application of different active materials of positive and negative electrodes, electrolyte and separator on the specific power and energy of LiC is shown.

Literature

1. Omar N., Daowd M., Hegazy O., Al Sakka M., Coose\-mans T., Van den Bossche P., Van Mierlo J. Assessment of lithium-ion capacitor for using in battery electric vehicle and hybrid electric vehicle applications. Electrochem. Acta, 2012, vol. 86, pp. 305–315, doi: 10.1016\j.electacta.2012.03.026.
2. Deshpande R. P. Ultracapacitors. India, McGraw-Hill Education, 2014, 427 p.
3. Koshtyal Yu., Rycovanov A., Rumyantsev A., Zhdanov V. Litij-ionnye kondensatory: ustrojstvo i harakteristiki [Lithium-ion capacitors construction and characteristics]. Komponenty i tehnologii [Components and technology], 2015, no. 2, pp. 62–65 (in\linebreak Russian).
4. Smith P. H., Tran T. N., Jiang T. L., Chung J. Lithium-ion capacitors: Electrochemical performance and thermal behavior. J. Power Sources, 2013, vol. 243, pp. 982–992, doi: 10.1016\j.jpowsour.2013.06.012.
5. Amatucci G. G., Badway F., Du Pasquier A., Zheng T. An asymmetric hybrid nonaqueous energy storage cell. J. Electrochem. Soc., 2001, vol. 148, no. 8, pp. A930-A939, doi: 10.1149\1.1383553.
6. Du Pasquier A., Plitz I., Menocal S., Amatucci G. A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications. J. Power Sources, 2003, vol. 115, no. 1, pp. 171–178, doi: 10.1016\s0378-7753(02)00718-8.
7. Naoi K., Ishimoto S., Isobe Y., Aoyagi S. High-rate nano-crystalline Li_4Ti_5O_{12 attached on carbon nano-fibers for hybrid supercapacitors. J. Power Sources, 2010, vol. 195, no. 18, pp. 6250-6254, doi: 10.1016\j.jpowsour.2009.12.104.
8. Naoi K., Naoi W., Aoyagi S., Miyamoto J., Kamino T. New Generation «Nanohybrid Supercapacitor». Acc. Chem. Res., 2013, vol. 46, no. 5, pp. 1075–1083, doi: 10.1021\ar200308h.
9. Sivakkumar S. R., Pandolfo A. G. Evaluation of lithium-ion capacitors assembled with pre-lithiated graphite anode and activated carbon cathode. Electrochem. Acta, 2012, vol. 65, pp. 280–287, doi: 10.1016\j.electacta.2012.01.076.
10. Aida T., Yamada K., Morita M. An advanced hybrid electrochemical capacitor that uses a wide potential range at the positive electrode. Electrochem. Solid State Lett., 2006, vol. 9, no. 12, pp. A534-A536, doi: 10.1149\1.2349495.
11. Schroeder M., Winter M., Passerini S., Balducci A. On the cycling stability of lithium-ion capacitors containing soft carbon as anodic material. J. Power Sources, 2013, vol. 238, pp. 388–394, doi: 10.1016\j.jpowsour.2013.04.045.
12. Rycovanov A. S. Sistemy balansa Li-on akkumuljatornyh batarej [Balance systems of lithium-ion bataries]. Silovaja jelektronika [Power Electronics], 2009, no. 1, pp. 52–55.(in Russian).
13. Rycovanov A. S. Jelementnaja baza sistem obespechenija funkcionirovanija Li-on akkumuljatorov [Electronic components for operation systems of lithium-ion cells]. Komponenty i tehnologii [Components and technology], 2012, no. 8, pp. 88–93 (in Russian).
14. Decaux C., Lota G., Raymundo-Pinero E., Frackowiak E., Beguin F. Electrochemical performance of a hybrid lithium-ion capacitor with a graphite anode preloaded from lithium bis(trifluoromethane)sulfonimide-based electrolyte. Electrochem. Acta, 2012, vol. 86, pp. 282–286, doi: 10.1016\j.electacta.2012.05.111.
15. Khomenko V., Raymundo-Pinero E., Beguin F. High-energy density graphite\AC capacitor in organic electrolyte. J. Power Sources, 2008, vol. 177, no. 2, pp. 643–651, doi: 10.1016\j.jpowsour.2007.11.101.
16. Cao W. J., Zheng J. P. Li-ion capacitors with carbon cathode and hard carbon\stabilized lithium metal powder anode electrodes. J. Power Sources, 2012, vol. 213, pp. 180–185, doi: 10.1016\j.jpowsour.2012.04.033.
17. Cao W. J., Shih J., Zheng J. P., Doung T. Development and characterization of Li-ion capacitor pouch cells. J. Power Sources, 2014, vol. 257, pp. 388–393, doi: 10.1016\j.jpowsour.2014.01.087.
18. Cao W. J., Li Y., Fitch B., Shih J., Doung T., Zheng J. Strategies to optimize lithium-ion supercapacitors achieving highperformance: Cathode configurations, lithium loadings on anode, and types of separator. J. Power Sources, 2014, vol. 268, pp. 841–847.
19. Gourdin G., Smith P. H., Jiang T., Tran T. N., Qu D. Y. Lithiation of amorphous carbon negative electrode for Li ion capacitor. J. Electroanal. Chem., 2013, vol. 688, pp. 103–112, doi: 10.1016\j.jelechem.2012.08.029.
20. Zhang J., Shi Z. Q., Wang C. Y. Effect of pre-lithiation degrees of mesocarbon microbeads anode on the electrochemical performance of lithium-ion capacitors. Electrochem. Acta, 2014, vol. 125, pp. 22–28, doi: 10.1016\j.e1ectacta.2014.01.040.
21. Lee S. K., Cho J. S., Kim B. K. {Method of pre-doping lithium ion into electrode and method of manufacturing electrochemical capacitor using the same. Patent US, no. 2012\0042490 A1, MPK H01G 9\042, H01M 4\04, H01G 9\15.
22. Ren J. J., Su L. W., Qin X., Yang M., Wei J. P., Zhou Z., Shen P. W. Pre-lithiated graphene nanosheets as negative electrode materials for Li-ion capacitors with high power and energy density. J. Power Sources, 2014, vol. 264, pp. 108–113, doi: 10.1016\j.jpowsour.2014.04.076.
23. Sivakkumar S. R., Nerkar J. Y., Pandolfo A. G. Rate capability of graphite materials as negative electrodes in lithium-ion capacitors. Electrochem. Acta, 2010, vol. 55, no. 9, pp. 3330–3335, doi: 10.1016\j.electacta.2010.01.059.
24. Sivakkumar S. R., Milev A. S., Pandolfo A. G. Effect of ball-milling on the rate and cycle-life performance of graphite as negative electrodes in lithium-ion capacitors. Electrochem. Acta, 2011, vol. 56, no. 27, pp. 9700–9706, doi: 10.1016\j.electacta.2011.06.060.
25. Sivakkumar S. R., Pandolfo A. G. Carbon nanotubes\amorphous carbon composites as high-power negative electrodes in lithium ion capacitors. J. Appl. Electrochem., 2014, vol. 44, no. 1, pp. 105–113, doi: 10.1007\s10800-013-0606-6.
26. Kim J. H., Kim J. S., Lim Y. G., Lee J. G., Kim Y. J. Effect of carbon types on the electrochemical properties of negative electrodes for Li-ion capacitors. J. Power Sources, 2011, vol. 196, no. 23, pp. 10490-10495, doi: 10.1016\j.jpowsour.2011.08.081.
27. Lee J. H., Shin W. H., Lim S. Y., Kim B. G., Choi J. W. Modified graphite and graphene electrodes for high-performance lithium ion hybrid capacitors.  Mater Renew Sustain Energy, 2014, vol. 3, no. 1, pp. 1–8, doi: 10.1007\s40243-014-0022-9.
28. Lee J. H., Shin W. H., Ryou M. H., Jin J. K., Kim J., Choi J. W. Functionalized Graphene for High Performance Lithium Ion Capacitors. Chemsuschem, 2012, vol. 5, no. 12, pp. 2328–2333, doi: 10.1002\cssc.201200549.
29. Smith P., Jiang T., Tran T. High Energy Density Ultracapacitors. Annual Merit Review, DOE Vehicle Technologies Program, Washington, D.C., Washington: DOE, 2010, 17 p. Available at https://www1.eere.energy.gov\vehiclesandfuels\pdfs\merit_review_2010\electrochemical_storage\es038_smith_2010_o.pdf (accessed 04.07.2015).
30. Smith P., Jiang T., Tran T., Mansour A. High Energy Density Ultracapacitors. Annual Merit Review, DOE Vehicle Technologies Program, Washington, D.C., Washington: DOE, 2009. 34 p. Available at {http://energy.gov\sites\prod\files\2014\03\f13\esZ22_smith.pdf (accessed 04.07.2015).
31. Smith P. High Capacitance Carbons for Electrochemical Double Layer Capacitors. Available at {http://www.scribd.com\doc\173773037\W7-Smith-Capacitors{\#scribd (accessed 04.07.2015).
32. Smith P., Jiang T., Tran T. High Energy Density Ultracapacitors. Annual Merit Review, DOE Vehicle Technologies Program, Washington, D.C., Washington: DOE, 2011, 23 p. Available at {http://energy.gov\sites\prod\files\2014\03\f10\es038_smith_2011_p.pdf (accessed 04.07.2015).
33. Matsui K., Takahata R., Ando N., Shirakami A., Tasa\-ki S., Hato Y. Lithium ion capacitor. Patent US, no. 7768769 B2, MPK H01G 9\00, H01G 9\02\2010.
34. Schroeder M., Winter M., Passerini S., Balducci A. On the Use of Soft Carbon and Propylene Carbonate-Based Electrolytes in Lithium-Ion Capacitors. J. Electrochem. Soc., 2012, vol. 159, no. 8, pp. A1240-A1245, doi: 10.1149\2.050208jes.
35. Aida T., Murayama I., Yamada K., Morita M. High-energy-density hybrid electrochemical capacitor using graphitizable carbon activated with KOH for positive electrode. J. Power Sources, 2007, vol. 166, no. 2, pp. 462–470, doi: 10.1016\j.jpowsour.2007.01.037.
36. Nagase T., Kano K., Tsuzuki T. Lithium ion capacitor. Patent US, no. 2013\0120909, MPK H01G 9\145, H01G 9\02. 2013.
37. Taguchi M., Watanabe Y., Ando N., Tagaki H. Accumulator device. Patent US, no. 20130017438, MPK  H01M2\06, H01G 9\025, H01G 9\155\2013.
38. Hayashi T., Utaka T. Electrode active material, electrode and electrical storage device. Patent US, no. 2013\0309577 A1, MPK H01G 9\048, H01M 4\583\2013.
39. Nansaka K., Taguchi M. Lithium ion capacitor. Patent EP, no. 2631924 A1, MPK H01G 9\02\2013.
40. Ni J. F., Huang Y. Y., Gao L. J. A high-performance hard carbon for Li-ion batteries and supercapacitors application. J. Power Sources, 2013, vol. 223, pp. 306–311, doi: 10.1016\j.jpowsour.2012.09.047.
41. Cao W. J., Zheng J. P. The Effect of Cathode and Anode Potentials on the Cycling Performance of Li-Ion Capacitors. J. Electrochem. Soc., 2013, vol. 160, no. 9, pp. A1572-A1576, doi: 10.1149/2.114309jes.
42. Tasaki S., Ando N., Nagai A., Matsui K., Hato Y. Lithium ion capacitor. Patent US, no. 7733629, 2010.
43. Lee J.-J. «Soft Carbon» as a LIB anode material for xEV application. Korea Advanced Battery Conference, 29 May, 2013, 24 p. Available at {http://www.sneresearch.com\down_file\20130529_9.pdf (accessed 03.03.2015).
44. Hashimoto T. Electrode for electrical storage element, and nonaqueous lithium electrical storage element. Patent WO, no. 2014054599 A1, MPK H01M4\587, H01G11\24, H01M10\052\2014.
45. Tezuka T., Hayashi T., Ando N., Watanabe Y., Taguchi M., Yasuda N. Lithium ion capacitor. Patent US, no. 2014\0002960 A1, MPK H01G 11\26\2014.
46. Chung G. C., Kim H. J., Yu S. I., Jun S. H., Choi J. W., Kim M. H. Origin of graphite exfoliation - An investigation of the important role of solvent cointercalation. J. Electrochem. Soc., 2000, vol. 147, no. 12, pp. 4391–4398, doi: 10.1149\1.1394076.

стр. 119
Heading: