Cd|KOH|NiOOH

Zn|NH4CI|MnO2

Li|LiClO4|MnO2

Pb|H2SO4|PbO2

H2|KOH|O2

Electrophysical properties of cathode materials Pr1-XLaX)2-YSrYNi1-ZCuZO4 (X=0.0–1; Y= 0.0–0.2; Z=0.0–1)

The phase composition, thermal coefficient of linear expansions (TCLE) and electrical conductivity of (PrXLa1-X)1.85Sr0.15Ni0.9Сu0.1O4 (X=0.0; 0.1; 0.5; 0.9 и 1) (X=0.0; 0.1; 0.5; 0.9 and 1), Pr1-YSrYNiO4 (Y= 0.0; 0.05; 0.1; 0.15; 0.16 and 0.2) and Pr1.84Sr0.16Ni1-ZCuZО4 (Z=0.0; 0.1; 0.5 and 1) are investigated at air in the temperature range 100–1000 °C.The thermal coefficient of linear expansion of (Pr1-XLaX)2-YSrYNi1-ZCuZO4 are in range of (11.6–16.3) 10-6 deg-1 and depends on the size and type of addition. One compositions are compatible on TCLE with electrolytes used in intermediate-temperature electrochemical devices other compositions have TCLE near to TCLE of electrolyte of Zr0.85Y0.15O1.925, that is used in high temperature electrochemical devices. The maximum of conductivity of the most conducting compositions is in the temperature interval of 500–800 °C.

Literature

1. Pal'guev S. F., Gil'derman V. K., Zemcov V. I. Vysokotemperaturnye oksidnye elektronnye provodniki dlja jelektrohimicheskih ustrojstv. [High temperature oxide electronic conductors for the electrochemical devices]. Moscow, Nauka, Publ, 1990 (in Russian).
2. Pal'guev S. F., Gil'derman V. K. Kislorodnyj perenos v oksidnyh jelektronnyh provodnikah. Ekaterinburg. [Oxygen transfer in oxide electronic conductors]. Yekaterinburg, UrО RAN, 2004 (in Russian).
3. Huang K., Feng M., Goodenough J. B., Milliken C. Electrode performance test on single ceramic fuel cells using as electrolyte Sr- and Mg- doped LaGaO3. J. Electrochem.Soc, 1997, vol.144, pp. 3620–3624.
4. Huang K., Feng M., Goodenough J. B., Scherling M. Characterization of Sr-doped LaMnO3 and LaCoO3 as cathode materials for a doped LaGaO3 ceramic fuel cell. J. Electrochem. Soc., 1996, vol. 143, pp. 3630–3636.
5. Hayashi H., Suzuki M., Inaba H. Thermal expansion of Sr- and Mg-doped LaGaO3. Solid State Ionics, 2000, vol. 128, pp. 131–139.
6. Vaganov E. G., Gorelov V. P., Bogdanovich N. M., Korzun I. V., Kazantsev V. A. Electroconduction and linear expansion of solid electrolytes
Ce1-xSmxO2-\delta  (x=0.10–0.30). Russian J. Electrochemistry, 2007, vol. 43, no. 6, pp. 663–666 (in Russian).
7. Pikalova E. Yu., Murashkina A. A., Maragou V. I., Demin A. K. Strekalovsky V. N., Tsiakaras P. E. СeO2 based materials doped with lanthanides for applications in intermediate temperature electrochemical devices. Inter. J. Hydrogen Energy, 2011, vol. 36, pp. 6175–6183.
8. Shkerin S. N., Bronin D. I., Kovyazina S. A., Gorelov V. P., Kuz'min A. V., Martem'yanova Z. S., Beresnev S. M. Structure and electric conductivity of (La,Sr)(Ga,Mg)O3-\alpha solid electrolyte. J. Struct. Chem., 2003, vol. 44, no. 2, pp. 216–221.
9. Skinner S. J., Kilner J. A. Oxygen diffusion and surface exchange in La2-xSrxNiO4+\delta . Solid State Ionics, 2000, vol. 135, pp. 709–712.
10. Minervini L., Grimes R., Kilner J., Sickafus K. Oxygen migration in La2NiO4. J.Mater.Chem,2000, vol.10, pp. 2349–2358.
11. Nishimoto S., Takahashi S., Kameshima Y., Matsuda M., Miyake M. Properties of La2-xPrxNiO4 cathode for intermediate-temperature solid oxide fuel cells. J. Ceram. Soc. Jap., 2011, vol. 119, pp. 246–250.
12. Gil'derman V. K., Antonov B. D. Electrical conductivity and thermal expansion of materials on the basis of Pr2-YSrYNi1-XCuXO4 (х=0–1: Y=0–0,15) for cathode of medium temperature electrochemical devices. Electrokhimicheskaya energetika [Electrochemical energetics], 2012, vol. 12, no. 2, pp. 59–63 (in Russian).
13. Gil'derman V. K. Material dlja kislorodnogo jelektroda jelektrohimicheskih ustrojstv [Material for the oxygen electrode of electrochemical devices] Patent RF, no. 2460178, MPK H01M4/48 (in Russian).
14. Gil'derman V. K., Antonov B. D. Jelektrofizicheskie svojstva katodnyh materialov (PrxLa1-x)1,85Sr0,15Ni0,9Me0,1O4 (x=0,0; 0,1; 0,5; 0,9; Me = Fe, Co
i Cu). ``Toplivnye jelementy i jenergoustanovki na ih osnove'', Sbornik tezisov Vserossijskoj konferencii s mezhdunarodnym uchastiem (Chernogolovka, 1–5 ijulja 2013 g.). Chernogolovka, 2013. S. 136.
 Electrophysics properties of cathode
materials (of PrxLa1 - x) 1.85Sr0.15Ni0.9Me0.1O4'' (x=0.0; 0.1; 0.5; 0.9; Me = Fe, Co
and Cu). [Collection of theses of the All-russian conference with international participation ``Fuel elements and devices on their basis''. (Chernogolovka, July, 1–5, 20130)], Chernogolovka, 2013, pp. 136 (in Russian).
15. Shannon R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst., 1976, A32, pp. 751–767.
16. Bassat J. M., Burriel M., Ceretti M., Veber P., Grenier J. C., Paulus W., Kilner J. A. Highlights on the anisotropic oxygen transport properties of nickelates with K2NiF4-type structure : links with the electrochemical properties of the corresponding IT-SOFC's сathodes. ECS Transactions, 2013, vol.57, pp. 1753–1760.
17. Zajac W., Swierczek K., Molenda J. Thermochemical compatibility between selected (La,Sr)(Co,Fe,Ni)O3 cathodes and rare earth doped ceria electrolytes. J. Power Sources, 2007, vol. 173, pp. 675–680.
18. Tietz F. Thermal expansion of SOFC materials. Ionics, 1999, vol. 5, pp. 129–139.
19. Huang K., Lee H. Y., Goodenough J. B. Sr- and Ni-doped LaCoO3 and LaFeO3 perovskites. New cathode materials for solid-oxide fuel cells. J. Electrochem. Soc., 1998, vol. 145, pp. 3220–3227.
20. Petric A., Huang P., Tietz F. Evaluation of La-Sr-Co-Fe-O perovskites for solid oxide fuel cells and gas separation membranes. Solid State Ionics, 2000, vol. 135, pp. 719–725.

стр. 71