ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Mikhailova A. A., Tuseeva E. K., Zhilov V. I., Khazova O. A., Skundin A. M. Electrooxidation of Formic Acid at Nanostructural Catalysts on the Base of Composites of Nanotubes, Polyelectrolytes, Platinum and Palladium. Electrochemical Energetics, 2017, vol. 17, iss. 1, pp. 29-36. DOI: 10.18500/1608-4039-2017-17-1-29-36, EDN: ZCTEIV

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 61)
Language: 
Russian
Article type: 
Article
EDN: 
ZCTEIV

Electrooxidation of Formic Acid at Nanostructural Catalysts on the Base of Composites of Nanotubes, Polyelectrolytes, Platinum and Palladium

Autors: 
Mikhailova Alla Aleksandrovna, Institute of Physical Chemistry and Electrochemistry of A. N. Frumkina of RAS
Tuseeva Elena Konstantinovna, Institute of Physical Chemistry and Electrochemistry of A. N. Frumkina of RAS
Zhilov Valerii Ivanovich, Institute of Physical Chemistry and Electrochemistry of A. N. Frumkina of RAS
Khazova Ol'ga Alekseevna, Institute of Physical Chemistry and Electrochemistry of A. N. Frumkina of RAS
Skundin Aleksandr Mordukhaevich, Institute of Physical Chemistry and Electrochemistry of A. N. Frumkina of RAS
Abstract: 

DOI: https://doi.org/10.18500/1608-4039-2017-17-1-29-36

A kinetics of formic acid anodic oxidation at electrodes consisting from composites of platinum and palladium with polyelectrolytes is studied. Various polyelectrolytes studied have different functional groups. The composites were prepared via ionic exchange, and were supported at single walled carbon nanotubes. The following polyelectrolytes were studied: polydiallyldimethylammonium chloride (PDDA), polyethylene imine (PEI), polystirene sulfonic acid (PSS) and polyacrylic acid (PAA). It was found that introduction of polyelectrolytes does not results in principal alteration of anodic process mechanism, but effects upon rated of separate parallel steps. The composites of Pt with PDDA and Pd with PSS were happen to be the most active.

Reference: 

1. Bagotsky V. S., Vasiliev Yu. B. Kataliticheskie i elektrokhimicheskie protsessy pri okislenii murav’inoi kisloty na elektrodakh-katalizatorakh. [Catalitic and Electrohemical Processes at Formic acid oxidation on Electrodes-Catalysts.] Moscow, Nauka Publ., 1968, pp. 280–304 (in Russian).

2. Capon A., Parsons R. The Oxidation of Formic Acid at Noble Metal Electrodes. J. Electroanalyt. Chem., 1973, vol. 44, pp. 1–7.

3. Beden B., Leger J. M., Lamy C. Electrocatalytic Oxidation of Oxygenated Aliphatic Organic Compounds at Noble Metal Electrodes. Modern Aspects of Electrochemistry. Eds. J. O.’M. Bockris, B. E. Conway, R. E. White. New York, Plenum Press, 1992, vol. 22, p. 97-264.

4. Zhou Y., Du C., Han G., Gao Y., Yin G. Ultra Low Pt Decorated PdFe Alloy Nanoparticles for Formic Acid. Electrochim. Acta, 2016, vol. 217, pp. 203–209.

5. Godinez-Salomon F., Arce-Estrada E., Hallen-Lopez M. Electrochemical Study of the Pt Nanopaticles Size Effect in the Formic Acid Oxidation. Int. J. Electrohem. Sci., 2012, vol. 7, pp. 2566–2576.

6. El-Nagar G. A., Mohammad A. M., El-Deab M., El-Anadouli B. E. Electrooxidation of Formic Acid at Binary Platinum and Gold Nanoparticles-Modified Electrodes: Effect of Chloride Ions. Int. J. Electrohem. Sci., 2014, vol. 9, pp. 4523–4534.

7. Xu J. B., Zhao T. S., Liang Z. X. Carbon Supported Platinum-Gold Alloy Catalysts for Direct Formic Acid Fuel Cells. J. Power Sources, 2008, vol. 185, pp. 857–861.

8. Al-Akraa I. M., Mohammad A. M., El-Deab M. S., El-Anadouli B. E. Advances in Direct Formic Acid Fuel Cells: Fabrication of Efficient Ir / Pd Nanocatalysts for Formic Acid Electro-oxidation. Int. J. Elecrtrochem. Sci., 2015, vol. 10, pp. 3282–3290.

9. Qiu X., Zhang H., Dai Y., Zhang F., Wu P. Pin Wu, Y. Tang. Sacrificial Template – Based Synthesis of Unified Hollow Porous Palladium Nanospheres for Formic Acid Electro-oxidation. Catalysts, 2015, vol. 5, pp. 992–1002.

10. Jiang K., Zhang H.-X., Zou S., Gai W.-B. Electrocatalysis of Formic Acid on Palladium and Platinum surfaces: from Fundamental Mechanism to Fuel Cell Application. Phys. Chem. Ghem. Phys., 2014, vol. 16, pp. 20360–20376.

11. Wang Y., Wu B., Gao Y., Tang Y. T. Lu, W. Xing, C. Liu. Kinetic Study of Formic Acid Oxidation on Carbon Supported Pd Electrocatalyst. J. Power Sources, 2009, vol. 192, pp. 372–375.

12. Wang S., Jiang S. P., Wang X. Polielectrolyte Functionalized Carbon Nanotubes as a Support for Noble Metal Electrocatalysts and their Activity for Methanol Oxidation. Nanotechnology, 2008, vol. 19, pp. 265601(bpp). DOI: 10.1088/0957-4484/19/26/265601.

13. Wang S., Yang F., Jiang S. P., Chen S., Wang X. Tuning the Electrocatalytic Activity of Pt Nanoparticles on Carbon Nanotubes via Surface Functionalization. Electrochem. Comm., 2010, vol. 12, pp. 1646–1649.

14. Tuseeva E. K., Zhigalina V. G., Zhigalina O. M., Chuvilin A. L., Naumkin A. V., Khazova O. A. Ultradisperse Catalytic Layers Supported by Nanotubes andPoly(diallildimetilammonium)chlodide Polymer. Russian Journal of Electrochemistry, 2013, vol. 49, pp. 265–271.

15. Tusseeva E. K., Zhigalina V. G., Zhigalina O. M., Zhilov V. I. O. A. Khazova. Kataliticheskie sloi na osnove kompozitov iz polimernykh materialov, uglerodnykh nanotrubok i adsorbirovannykh chastits platiny [Catalytics Layers Composite from Polymeric Materials, Carbon Nanotubes and Adsorbed Particals of Platinum]. Elektrohimicheskaja Energetika [Electrochemical energetics], 2014, vol. 14, no. 1, pp. 26–34 (in Russian).

16. Mikhailova A. A., Tuseeva E. K., Naumkin A. V., Pereyaslavtsev A. U., Zhilov V. I., Khazova O. A. Nanostrukturnye katalizatory na osnove kompozitov platiny, ruteniya, polielektrolitov i nanotrubok [Nanostructural Catalists, composed on Composites of Platinum, Rutenium, Polyelectrolytes and Nanotubes]. Elektrohimicheskaja Energetika [Electrochemical energetics], 2016, vol. 16, no. 1. pp. 24–29 (in Russian).

17. Wang T. C., Cohen R. E., Rubner M. Metallodielectric Protonic Structures Based on Polyelectrolite Multilayers. Adv. Mater., 2002, vol. 12, pp. 1534–1537.

18. Zang X., Su Z. Polyelectrolyte-Multilayer-Supported Au@Ag Core-Shell Nanoparticles with High Catalytic Activity. Adv. Mater., 2012, vol. 24, pp. 4574–4577.

19. Chu C., Su Z. Facile Synthesis of AuPt Alloy Nanoparticles in Polyelectrolyte Maltilayers with Enhanced Catalytic Activity for Reduction of 4-Nitrophenol. Langmuir, 2014, vol. 30, pp. 15345–15350.

20. Zan X., Su Z. Incorporation of Nanoparticles into Polyelectrolyte Multilayers via Counterion Exchange and in situ Redaction. Langmuir, 2009, vol. 25(20), pp. 12355–12360.

21. Wei J., Wang L., Zhang X., Ma X., Wahg H., Su Z. Coarsening of Silver Nanoparticles in Polyelectrolyte Multilayers. Langmuir, 2013, vol. 29, pp. 11413–11419.

22. Mavrikakis М., Hammer B., Norskov J. K. Effect of Strain on the Reactivity of Metal Surfaces. Physical Rev. Lett., 1998, vol. 81, pp. 2819–2822.

23. Mikhaylova A. A., Tusseeva E. K., Mayorova N. A., Rychagov A. Yu., Volfkovich Yu. M., Krestinin A. V., Khazova O. A. Single-Walled Carbon Nanotubes and their Composites with Polyaniline. Structure, Catalytic and Capacitive Properties as Applied to Fuel Cells and Supercapacitors. Electrochim. Acta, 2011, vol. 56, pp. 3656–3665.

24. Maksimov Yu. M., Lapa A. S., Podlovchenko B. I. Adsorbtsiya adatomov medi na palladievykh elektrodakh [Adsorption of Adatoms of Copper on Palladium Electrodes]. Elektrokhimiya [Electrochim], 1989, vol. 25, pp. 712–715 (in Russian).

Received: 
24.03.2017
Accepted: 
24.03.2017
Published: 
24.04.2017