Для цитирования:
Кулова Т. Л., Скундин А. М. Роль виниленкарбоната в литий-ионных и натрий-ионных аккумулятора // Электрохимическая энергетика. 2021. Т. 21, вып. 3. С. 117-131. DOI: 10.18500/1608-4039-2021-21-3-117-131, EDN: ZOPMQP
Роль виниленкарбоната в литий-ионных и натрий-ионных аккумулятора
Мини-обзор, посвящённый влиянию добавок виниленкарбоната в электролит литий-ионных и натрий-ионных аккумуляторов на строение и свойства пассивных плёнок на электродах и, соответственно, на характеристики аккумуляторов. Рассмотренная литература охватывает в основном работы последних 20 лет.
1. G.-A. Nazri, G. Pistoia (eds.). Lithium Batteries. Science and Technology. Springer, 2009. 708 p.
2. Skundin A. M., Efimov O. N., Yarmolenko O. V. The state-of-the-art and prospects for the development of rechargeable lithium batteries. Russian Chemical Reviews, 2002, vol. 71, no. 4, pp. 329–346 (in Russian).
3. Peled E. The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems–The Solid Electrolyte Interphase Model. J. Electrochem. Soc., 1979, vol. 126, pp. 2047–2051. https://doi.org/10.1149/1.2128859
4. P. B. Balbuena, Y. Wang (eds.). Lithium-ion batteries : Solid-Electrolyte Interface. London, Imperial College Press, 2004. 407 p.
5. Peled E., Golodnitsky D., Ardel G. Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes. J. Electrochem. Soc., 1997, vol. 144, pp. L208–L210. https://doi.org/10.1149/1.1837858
6. Agubra V., Fergus J. Lithium Ion Battery Anode Aging Mechanisms. Materials, 2013, vol. 6, pp. 1310–1325. https://doi.org/10.3390/ma6041310
7. Verma P., Maire P., Novak P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim. Acta, 2010, vol. 55, pp. 6332–6341. https://doi.org/10.1016/j.electacta.2010.05.072
8. Aurbach D. Review of selected electrode–solution interactions which determine the performance of Li and Li-ion batteries. J. Power Sources, 2000, vol. 89, pp. 206–218.
9. Yazami R. Surface chemistry and lithium storage capability of the graphite-lithium electrode. Electrochim. Acta, 1999, vol. 45, pp. 87–97.
10. Zhang S. S. A review on electrolyte additives for lithium-ion batteries. J. Power Sources, 2006, vol. 162, pp. 1379–1394. https://doi.org/10.1016/j.jpowsour.2006.07.074
11. Zhang S., Ding M. S., Xu K., Allen J., Jow T. R. Understanding Solid Electrolyte Interface Film Formation on Graphite Electrodes. Electrochem. Solid-State Lett., 2001, vol. 4, pp. A206–A208. https://doi.org/10.1149/1.1414946
12. Edstrom K., Herstedt M., Abraham D. P. A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries. J. Power Sources, 2006, vol. 153, pp. 380–384. https://doi.org/10.1016/j.jpowsour.2005.05.062
13. Yoshida T., Takahashi M., Morikawa S., Ihara C., Katsukawa H., Shiratsuchi T., Yamaki J. Degradation Mechanism and Life Prediction of Lithium-Ion Batteries. J. Electrochem. Soc., 2006, vol. 153, pp. A576–A582. https://doi.org/10.1149/1.2162467
14. Alliata D. R., Kotz R., Novak P., Siegenthaler H. Electrochemical SPM investigation of the solid electrolyte interphase film formed on HOPG electrodes. Electrochem. Commun., 2000, vol. 2, pp. 436–440. https://doi.org/10.1016/S1388-2481(00)00056-4
15. Zhang Z., Smith K., Jervis R., Shearing P. R., Miller T. S., Brett D. J. L. Operando Electrochemical Atomic Force Microscopy of Solid-Electrolyte Interphase Formation on Graphite Anodes : The Evolution of SEI Morphology and Mechanical Properties. ACS Appl. Mater. Interfaces, 2020, vol. 12, pp. 35132–35141. https://doi.org/10.1021/acsami.0c11190
16. Yazami R., Reynier Y. F. Mechanism of self-discharge in graphite-lithium anode. Electrochim. Acta, 2002, vol. 47, pp. 1217–1223.
17. Broussely M., Herreyre S., Biensan P., Kasztejna P., Nechev K., Staniewicz R. J. Aging mechanism in Li-ion cells and calendar life predictions. J. Power Sources, 2001, vol. 97–98, pp. 13–21.
18. Agubra V. A., Fergus J. W. The formation and stability of the solid electrolyte interface on the graphite anode. J. Power Sources, 2014, vol. 268, pp. 153–162. https://doi.org/10.1016/j.jpowsour.2014.06.024
19. Haregewoin A. M., Wotango A. S., Hwang B.J. Electrolyte additives for lithium-ion battery electrodes : Progress and perspectives. Energy Environ. Sci., 2016, vol. 9, pp. 1955–1988. https://doi.org/10.1039/c6ee00123h
20. Qian Y., Hu S., Zou X., Deng Z., Xu Y., Cao Z., Kang Y., Deng Y., Shi Q., Xu K., Deng Y. How electrolyte additives work in Li-ion batteries. Energy Storage Materials, 2019, vol. 20, pp. 208–215. https://doi.org/10.1016/j.ensm.2018.11.015
21. Xu K. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem. Rev., 2004, vol. 104, p. 4303–4417. https://doi.org/10.1021/cr030203g
22. Xu K. Electrolytes and Interphases in Li-Ion Batteries and Beyond. Chem. Rev., 2014, vol. 114, pp. 11503–11618. https://doi.org/10.1021/cr500003w
23. Ota H., Sakata Y., Otake Y., Shima K., Ue M., Yamaki J. Structural and Functional Analysis of Surface Film on Li Anode in Vinylene Carbonate-Containing Electrolyte. J. Electrochem. Soc., 2004, vol. 151, pp. A1778–A1788. https://doi.org/10.1149/1.1798411
24. Ota H., Shima K., Ue M., Yamaki J. Effect of vinylene carbonate as additive to electrolyte for lithium metal anode. Electrochim. Acta, 2004, vol. 49, pp. 565–572. https://doi.org/10.1016/j.electacta.2003.09.010
25. Mogi R., Inaba M., Jeong S.-K., Iriyama Y., Abe T., Ogumi Z. Effects of Some Organic Additives on Lithium Deposition in Propylene Carbonate. J. Electrochem. Soc., 2002, vol. 149, pp. A1578–A1583. https://doi.org/10.1149/1.1516770
26. Simon B., Boeuve J.-P. Rechargeable Lithium Electrochemical Cell. US Patent no. 5626981 (1997).
27. Matsuoka O., Hiwara A., Omi T., Toriida M., Hayashi T., Tanaka C., Saito Y., Ishida T., Tan H., Ono S. S., Yamamoto S. Ultra-thin passivating film induced by vinylene carbonate on highly oriented pyrolytic graphite negative electrode in lithium-ion cell. J. Power Sources, 2002, vol. 108, pp. 128–138.
28. Aurbach D., Gamolsky K., Markovsky B., Gofer Y., Schmidt M., Heider U. On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries. Electrochim. Acta, 2002, vol. 47, pp. 1423–1439.
29. Zhang S. S., Xu K., Jow T. R. EIS study on the formation of solid electrolyte interface in Li-ion battery. Electrochim. Acta, 2006, vol. 51, pp. 1636–1640. https://doi.org/10.1016/j.electacta.2005.02.137
30. Aurbach D., Gnanaraj J. S., Geissler W., Schmidt M. Vinylene Carbonate and Li Salicylatoborate as Additives in LiPF3(CF2CF3)3 Solutions for Rechargeable Li-Ion Batteries. J. Electrochem. Soc., 2004, vol. 151, pp. A23–A30. https://doi.org/10.1149/1.1631820
31. Contestabile M., Morselli M., Paraventi R., Neat R. J. A comparative study on the effect of electrolyte/additives on the performance of ICP383562 Li-ion polymer (soft-pack) cells. J. Power Sources, 2003, vol. 119–121, pp. 943–947. https://doi.org/10.1016/S0378-7753(03)00292-1
32. Ota H., Sakata Y., Inoue A., Yamaguchi S. Analysis of Vinylene Carbonate Derived SEI Layers on Graphite Anode. J. Electrochem. Soc., 2004, vol. 151, pp. A1659–A1669. https://doi.org/10.1149/1.1785795
33. Shim E.-G., Nam T.-H., Kim J.-G., Kim H.S., Moon S.-I. Effects of functional electrolyte additives for Li-ion batteries. J. Power Sources, 2007, vol. 172, pp. 901–907. https://doi.org/10.1016/j.jpowsour.2007.04.089
34. Oesten R., Heider U., Schmidt M. Advanced electrolytes. Solid State Ionics, 2002, vol. 148, pp. 391–397. https://doi.org/10.1016/S0167-2738(02)00078-4
35. Barker J., Gao F. Carbonaceous Electrode and Compatible Electrolyte Solvent. US Patent no. 5712059 (1998).
36. Naruse Y., Fudjita S., Omaru A. Non-aqueous Liquid Electrolyte Secondary Cell. US Patent no. 5714281 (1998).
37. Zhang X., Kostecki R., Richardson T. J., Pugh J. K., Ross Jr. P. N. Electrochemical and Infrared Studies of the Reduction of Organic Carbonates. J. Electrochem. Soc., 2001, vol. 148, pp. A1341–A1345. https://doi.org/10.1149/1.1415547
38. Peled E., Golodnitsky D., Menachem C., Bar-Tow D. An Advanced Tool for the Selection of Electrolyte Components for Rechargeable Lithium Batteries. J. Electrochem. Soc., 1998, vol. 145, pp. 3482–3486. https://doi.org/10.1149/1.1838831
39. El Ouatani L., Dedryvere R., Siret C., Biensan P., Reynaud S., Iratcabal P., Gonbeau D. The Effect of Vinylene Carbonate Additive on Surface Film Formation on Both Electrodes in Li-Ion Batteries. J. Electrochem. Soc., 2009, vol. 156, pp. A103–A113. https://doi.org/10.1149/1.3029674
40. Ahn S., Fukushima M., Nara H., Momma T., Sugimoto W., Osaka T. Effect of fluoroethylene carbonate and vinylene carbonate additives on full-cell optimization of Li-ion capacitors. Electrochem. Commun., 2021, vol. 122, article no. 106905. https://doi.org/10.1016/j.elecom.2020.106905
41. Michan A. L., Parimalam B. S., Leskes M., Kerber R. N., Yoon T., Grey C. P., Lucht B. L. Fluoroethylene Carbonate and Vinylene Carbonate Reduction : Understanding Lithium-Ion Battery Electrolyte Additives and Solid Electrolyte Interphase Formation. Chem. Mater., 2016, vol. 28, pp. 8149–8159. https://doi.org/10.1021/acs.chemmater.6b02282
42. Nie M., Chalasani D., Abraham D. P., Chen Y., Bose A., Lucht B. L. Lithium ion battery graphite solid electrolyte interphase revealed by microscopy and spectroscopy. J. Phys. Chem. C, 2013, vol. 117, pp. 1257–1267. https://doi.org/10.1021/jp3118055
43. Kitz P. G., Lacey M. J. Novak P., Berg E. J. Operando investigation of the solid electrolyte interphase mechanical and transport properties formed from vinylene carbonate and fluoroethylene carbonate. J. Power Sources, 2020, vol. 477, article no. 228567. https://doi.org/10.1016/j.jpowsour.2020.228567
44. Nie M., Demeaux J., Young B. T., Heskett D. R., Chen Y., Bose A., Woicik J. C., Lucht B. L. Effect of Vinylene Carbonate and Fluoroethylene Carbonate on SEI Formation on Graphitic Anodes in Li-Ion Batteries. J. Electrochem. Soc., 2015, vol. 162, pp. A7008–A7014. https://doi.org/10.1149/2.0021513jes
45. Lee S.-H., You H.-G., Han K.-S., Kim J., Jung I.-H., Song J.-H. A new approach to surface properties of solid electrolyte interphase on a graphite negative electrode. J. Power Sources, 2014, vol. 247, pp. 307–313. https://doi.org/10.1016/j.jpowsour.2013.08.105
46. Sasaki T., Abe T., Iriyama Y., Inaba M., Ogumi Z. Suppression of an Alkyl Dicarbonate Formation in Li-Ion Cells. J. Electrochem. Soc., 2005, vol. 152, pp. A2046–A2050. https://doi.org/10.1149/1.2034517
47. Sasaki T., Jeong S.-K.,, Abe T., Iriyama Y., Inaba M., Ogumi Z. Effect of an Alkyl Dicarbonate on Li-Ion Cell Performance. J. Electrochem. Soc., 2005, vol. 152, pp. A1963–A1968. https://doi.org/10.1149/1.2008987
48. Wang Y., Nakamura S., Tasaki K., Balbuena P. B. Theoretical Studies To Understand Surface Chemistry on Carbon Anodes for Lithium-Ion Batteries: How Does Vinylene Carbonate Play Its Role as an Electrolyte Additive? J. Am. Chem. Soc., 2002, vol. 124, pp. 4408–4421. https://doi.org/10.1021/ja017073i
49. Ushirogata K., Sodeyama K., Okuno Y., Tateyama Y. Additive Effect on Reductive Decomposition and Binding of Carbonate-Based Solvent toward Solid Electrolyte Interphase Formation in Lithium-Ion Battery. J. Am. Chem. Soc., 2013, vol. 135, pp. 11967–11974. https://doi.org/10.1021/ja405079s
50. Jeong S.-K., Inaba M., Mogi R., Iriyama Y., Abe T., Ogumi Z. Surface Film Formation on a Graphite Negative Electrode in Lithium-Ion Batteries: Atomic Force Microscopy Study on the Effects of Film-Forming Additives in Propylene Carbonate Solutions. Langmuir, 2001, vol. 17, pp. 8281–8286. https://doi.org/10.1021/la015553h
51. Wang Y., Balbuena P. B. Theoretical Insights into the Reductive Decompositions of Propylene Carbonate and Vinylene Carbonate : Density Functional Theory Studies. J. Phys. Chem. B, 2002, vol. 106, pp. 4486–4495. https://doi.org/10.1021/ja017073i
52. Buqa H., Wursig A., Vetter J., Spahr M. E., Krumeich F., Novak P. SEI film formation on highly crystalline graphitic materials in lithium-ion batteries. J. Power Sources, 2006, vol. 153, pp. 385–390. https://doi.org/10.1016/j.jpowsour.2005.05.0363
53. Chang C.-C., Hsu S.-H., Jung Y.-F., Yang C.H. Vinylene carbonate and vinylene trithiocarbonate as electrolyte additives for lithium-ion battery. J. Power Sources, 2011, vol. 196, pp. 9605– 9611. https://doi.org/10.1016/j.jpowsour.2011.06.058
54. Sato K., Zhao L., Okada S., Yamaki J. LiPF6 / methyl difluoroacetate electrolyte with vinylene carbonate additive for Li-ion batteries. J. Power Sources, 2011, vol. 196, pp. 5617–5622. https://doi.org/10.1016/j.jpowsour.2011.02.068
55. Holzapfel M., Jost C., Novak P. Stable cycling of graphite in an ionic liquid based electrolyte. Chem. Commun., 2004, iss. 18, pp. 2098–2099. https://doi.org/10.1039/B407526A
56. Holzapfel M., Jost C., Prodi-Schwab A., Krumeich F. Wursig A., Buqa H., Novak P. Stabilisation of lithiated graphite in an electrolyte based on ionic liquids : An electrochemical and scanning electron microscopy study. Carbon, 2005, vol. 43, pp. 1488–1498. https://doi.org/10.1016/j.carbon.2005.01.030
57. Zheng H., Jiang K., Abe T., Ogumi Z. Electrochemical intercalation of lithium into a natural graphite anode in quaternary ammonium-based ionic liquid electrolytes. Carbon, 2006, vol. 44, pp. 203–210. https://doi.org/10.1016/j.carbon.2005.07.038
58. Sato T., Maruo T., Marukane S., Takagi K. Ionic liquids containing carbonate solvent as electrolytes for lithium-ion cells. J. Power Sources, 2004, vol. 138, pp. 253–261. https://doi.org/10.1016/j.jpowsour.2004.06.027
59. Srour H., Rouault H., Santini C. Imidazolium Based Ionic Liquid Electrolytes for Li-Ion Secondary Batteries Based on Graphite and LiFePO4. J. Electrochem. Soc., 2013, vol. 160, pp. A66–A69. https://doi.org/10.1149/2.025301jes
60. Xiong D., Burns J. C., Smith A. J., Sinha N., Dahn J. R. A High Precision Study of the Effect of Vinylene Carbonate (VC) Additive in Li / Graphite Cells. J. Electrochem. Soc., 2011, vol. 158, pp. A1431–A1435. https://doi.org/10.1149/2.100112jes
61. Sinha N. N., Burns J. C., Dahn J. R. Storage Studies on Li / Graphite Cells and the Impact of So-Called SEI-Forming Electrolyte Additives. J. Electrochem. Soc., 2013, vol. 160, pp. A709–A714. https://doi.org/10.1149/2.008306jes
62. Cho I. H., Kim S.-S., Shin S. C., Choi N.-S. Effect of SEI on Capacity Losses of Spinel Lithium Manganese Oxide/Graphite Batteries Stored at 60°C. Electrochem. Solid-State Lett., 2010, vol. 13, pp. A168–A172. https://doi.org/10.1149/1.3481711
63. Komaba S., Itabashi T., Ohtsuka T., Groult H., Kumagai N., Kaplan B., Yashiro H. Impact of 2-Vinylpyridine as Electrolyte Additive on Surface and Electrochemistry of Graphite for C / LiMn2O4 Li-Ion Cells. J. Electrochem. Soc., 2005, vol. 152, pp. A937–A946. https://doi.org/10.1149/1.1885385
64. Shin J., Kim T.-H., Lee Y., Cho E. Key functional groups defining the formation of Si anode solid-electrolyte interphase towards high energy density Li-ion batteries. Energy Storage Materials, 2020, vol. 25, pp. 764–781. https://doi.org/10.1016/j.ensm.2019.09.009
65. Nie M., Abraham D. P., Chen Y., Bose A., Lucht B. L. Silicon Solid Electrolyte Interphase (SEI) of Lithium Ion Battery Characterized by Microscopy and Spectroscopy. J. Phys. Chem. C, 2013, vol. 117, pp. 13403–13412. https://doi.org/10.1021/jp404155y
66. Philippe B. DedryveМre R., Gorgoi M., Rensmo H., Gonbeau D., Edstrom K. Role of the LiPF6 Salt for the Long-Term Stability of Silicon Electrodes in Li-Ion Batteries – A Photoelectron Spectroscopy Study. Chem. Mater., 2013, vol. 25, pp. 394–404. https://doi.org/10.1021/cm303399v
67. Kulova T. L., Emetz V. V., Skundin A. M. Dynamic character of processes at storage of silicon-composite-based electrodes. Electrochemical Energetics, 2016, vol. 16, no. 1, pp. 3–9 (in Russian). https://doi.org/10.18500/1608-4039-2016-1-3-9 https://doi.org/10.18500/1608-4039-2016-1-3-9
68. Emets V. V., Kulova T. L., Skundin A. M. Dynamic Behavior of Silicon-Based Electrodes at Open Circuit Conditions. Intern. J. Electrochem. Sci., 2017, vol. 12, pp. 2754–2762. https://doi.org/ 10.20964/2017.04.25
69. Zheng J., Zheng H., Wang R., Ben L., Lu W., Chen L., Chen L., Li H. 3D visualization of inhomogeneous multi-layered structure and Young’s modulus of the solid electrolyte interphase (SEI) on silicon anodes for lithium-ion batteries. Phys. Chem. Chem. Phys., 2014, vol. 16, pp. 13229–13238. https://doi.org/10.1039/c4cp01968g
70. Schroder K. W., Celio H., Webb L. J., Stevenson K. J. Examining Solid Electrolyte Interphase Formation on Crystalline Silicon Electrodes : Influence of Electrochemical Preparation and Ambient Exposure Conditions. J. Phys. Chem. C, 2012, vol. 116, pp. 19737–19747. https://doi.org/10.1021/jp307372m
71. Yoon T., Chapman N., Seo D. M., Lucht B. L. Lithium Salt Effects on Silicon Electrode Performance and Solid Electrolyte Interphase (SEI) Structure, Role of Solution Structure on SEI Formation. J. Electrochem. Soc., 2017, vol. 164, pp. A2082–A2088. https://doi.org/10.1149/2.1421709jes
72. Chen L., Wang K., Xie X., Xie J. Enhancing Electrochemical Performance of Silicon Film Anode by Vinylene Carbonate Electrolyte Additive. Electrochem. Solid-State Lett., 2006, vol. 9, pp. A512–A515. https://doi.org/10.1149/1.2338771
73. Chen L., Wang K., Xie X., Xie J. Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium-ion batteries. J. Power Sources, 2007, vol. 174, pp. 538–543. https://doi.org/10.1016/j.jpowsour.2007.06.149
74. Martin L., Martinez H., Ulldemolins M., Pecquenard B. Le Cras F. Evolution of the Si electrode / electrolyte interface in lithium batteries characterized by XPS and AFM techniques : The influence of vinylene carbonate additive. Solid State Ionics, 2012, vol. 215, pp. 36–44. https://doi.org/10.1016/j.ssi.2012.03.042
75. Ulldemolins M., Le Crasa F., Pecquenard B., Phan V. P., Martin L., Martinez H. Investigation on the part played by the solid electrolyte interphase on the electrochemical performances of the silicon electrode for lithium-ion batteries. J. Power Sources, 2012, vol. 206, pp. 245–252. https://doi.org/10.1016/j.jpowsour.2012.01.095
76. Dalavi S., Guduru P., Lucht B. L. Performance Enhancing Electrolyte Additives for Lithium Ion Batteries with Silicon Anodes. J. Electrochem. Soc., 2012, vol. 159, pp. A642–A646. https://doi.org/10.1149/2.076205jes
77. Kamikawa Y., Amezawa K., Terada K. First-Principles Study on the Mechanical Properties of Polymers Formed by the Electrochemical Reduction of Fluoroethylene Carbonate and Vinylene Carbonate. J. Phys. Chem. C, 2020, vol. 124, pp. 19937–19944. https://doi.org/10.1021/acs.jpcc.0c04878
78. Nguyen C. C., Lucht B. L. Comparative Study of Fluoroethylene Carbonate and Vinylene Carbonate for Silicon Anodes in Lithium Ion Batteries. J. Electrochem. Soc., 2014, vol. 161, pp. A1933–A1938. https://doi.org/10.1149/2.0731412jes
79. Profatilova I. A., Stock C., Schmitz A., Passerini S., Winter M. Enhanced thermal stability of a lithiated nano-silicon electrode by fluoroethylene carbonate and vinylene carbonate. J. Power Sources, 2013, vol. 222, pp. 140–149. https://doi.org/10.1016/j.jpowsour.2012.08.066
80. Mart??nez de la Hoz J. M., Balbuena P. B. Reduction mechanisms of additives on Si anodes of Li-ion batteries. Phys. Chem. Chem. Phys., 2014, vol. 16, pp. 17091–17098. https://doi.org/10.1039/c4cp01948b
81. Hu Y.-S., Demir-Cakan R., Titirici M.M., Muller J.-O., Schlogl R., Antonietti M., Maier J. Superior Storage Performance of a Si@SiOx/C Nanocomposite as Anode Material for Lithium-Ion Batteries. Angew. Chem. Int. Ed., 2008, vol. 47, pp. 1645 –1649. https://doi.org/10.1002/anie.200704287
82. Jin Y., Kneusels N. H., Marbella L. E. Castillo-Mart??nez E., Magusin P. C. M. M., Weatherup R. S., Jonsson E., Liu T., Paul S., Grey C. P. Understanding Fluoroethylene Carbonate and Vinylene Carbonate Based Electrolytes for Si Anodes in Lithium Ion Batteries with NMR Spectroscopy. J. Am. Chem. Soc., 2018, vol. 140, pp. 9854–9867. https://doi.org/10.1021/jacs.8b03408
83. Li M.-Q., Qu M.-Z., He X.-Y., Yu Z.-L. Electrochemical Performance of Si / Graphite / Carbon Composite Electrode in Mixed Electrolytes Containing LiBOB and LiPF6. J. Electrochem. Soc., 2009, vol. 156, pp. A294–A298. https://doi.org/10.1149/1.3076196
84. Choi N.-S., Yew K. H., Kim H., Kim S.S., Choi W.-U. Surface layer formed on silicon thin-film electrode in lithium bis(oxalato) borate-based electrolyte. J. Power Sources, 2007, vol. 172, pp. 404–409. https://doi.org/10.1016/j.jpowsour.2007.07.058
85. Abe K., Miyoshi K., Hattori T., Ushigoe Y., Yoshitake H. Functional electrolytes : Synergetic effect of electrolyte additives for lithium-ion battery. J. Power Sources, 2008, vol. 184, pp. 449–455. https://doi.org/10.1016/j.jpowsour.2008.03.037
86. Choi N.-S., Lee Y., Kim S.-S., Shin S.-C., Kang Y.-M. Improving the electrochemical properties of graphite / LiCoO2 cells in ionic liquid-containing electrolytes. J. Power Sources, 2010, vol. 195, pp. 2368–2371. https://doi.org/10.1016/j.jpowsour.2009.10.063
87. Mazouzi D., Delpuech N., Oumellal Y., Gauthier M., Cerbelaud M., Gaubicher J. Dupre N., Moreau P., Guyomard D., Roue L., Lestriez B. New insights into the silicon-based electrode’s irreversibility along cycle life through simple gravimetric method. J. Power Sources, 2012, vol. 220, pp. 180–184. https://doi.org/10.1016/j.jpowsour.2012.08.007
88. Lindgren F., Xu C., Niedzicki L., Marcinek M., Gustafsson T., Bjorefors F., Edstrom K., Younesi R. SEI Formation and Interfacial Stability of a Si Electrode in a LiTDI-Salt Based Electrolyte with FEC and VC Additives for Li-Ion Batteries. ACS Appl. Mater. Interfaces, 2016, vol. 8, pp. 15758–15766. https://doi.org/10.1021/acsami.6b02650
89. Gmitter A. J., Plitz I., Amatucci G. G. High Concentration Dinitrile, 3-Alkoxypropionitrile, and Linear Carbonate Electrolytes Enabled by Vinylene and Monofluoroethylene Carbonate Additives. J. Electrochem. Soc., 2012, vol. 159, pp. A370–A379. https://doi.org/10.1149/2.016204jes
90. Park S., Ryu J. H., Oh S. M. Passivating Ability of Surface Film Derived from Vinylene Carbonate on Tin Negative Electrode. J. Electrochem. Soc., 2011, vol. 158, pp. A498–A503. https://doi.org/10.1149/1.3561424
91. Seo D. M., Nguyen C. C., Young B. T., Heskett D. R., Woicik J. C., Lucht B. L. Characterizing Solid Electrolyte Interphase on Sn Anode in Lithium Ion Battery. J. Electrochem. Soc., 2015, vol. 162, pp. A7091–A7095. https://doi.org/10.1149/2.0121513jes
92. Kennedy T., Mullane E., Geaney H., Osiak M., O’Dwyer C., Ryan K. M. High-Performance Germanium Nanowire-Based Lithium-Ion Battery Anodes Extending over 1000 Cycles Through in Situ Formation of a Continuous Porous Network. Nano Lett., 2014, vol. 14, pp. 716–723. https://doi.org/10.1021/nl403979s
93. Jackson E. D., Prieto A. L. Copper Antimonide Nanowire Array Lithium Ion Anodes Stabilized by Electrolyte Additives. ACS Appl. Mater. Interfaces, 2016, vol. 8, pp. 30379–30386. https://doi.org/10.1021/acsami.6b08033
94. Kraynak L. A., Schneider J. D., Prieto A. L. Exploring the Role of Vinylene Carbonate in the Passivation and Capacity Retention of Cu2Sb Thin Film Anodes. J. Phys. Chem. C, 2020, vol. 124, pp. 26083–26093. https://doi.org/10.1021/acs.jpcc.0c04064
95. Zhang W., Ghamouss F., Darwiche A., Monconduit L., Lemordant D., Dedryvere R., Martinez H. Surface film formation on TiSnSb electrodes : Impact of electrolyte additives. J. Power Sources, 2014, vol. 268, pp. 645–657. https://doi.org/10.1016/j.jpowsour.2014.06.041
96. Ostrovskii D., Ronci F., Scrosati B. B., Jacobsson P. A FTIR and Raman study of spontaneous reactions occurring at the LiNiyCo(1 ? y)O2 electrode/non-aqueous electrolyte interface. J. Power Sources, 2001, vol. 94, pp. 183–188.
97. Wang Y., Guo X., Greenbaum S., Liu J., Amine K. Solid Electrolyte Interphase Formation on Lithium-Ion Electrodes. A 7Li Nuclear Magnetic Resonance Study. Electrochem. Solid-State Lett., 2001, vol. 4, pp. A68–A70. https://doi.org/10.1149/1.1368716
98. Balasubramanian M., Lee H. S., Sun X., Yang X. Q., Moodenbaugh A. R., McBreen J., Fischer D. A., Fu Z. Formation of SEI on Cycled Lithium-Ion Battery Cathodes Soft X-Ray Absorption Study. Electrochem. Solid-State Lett., 2002, vol. 5, pp. A22–A25. https://doi.org/10.1149/1.1423802
99. Aurbach D., Markovsky B., Rodkin A., Levi E., Cohen Y. S., Kim H.-J., Schmidt M. On the capacity fading of LiCoO2 intercalation electrodes : The effect of cycling, storage, temperature, and surface film forming additives. Electrochim. Acta, 2002, vol. 47, pp. 4291–4306.
100. Edstrom K., Gustafsson T., Thomas J. O. The cathode–electrolyte interface in the Li-ion battery. Electrochim. Acta, 2004, vol. 50, pp. 397–403. https://doi.org/10.1016/j.electacta.2004.03.049
101. Itagaki M., Kobari N., Yotsuda S., Watanabe K., Kinoshita S., Ue M. LiCoO2 electrode / electrolyte interface of Li-ion rechargeable batteries investigated by in situ electrochemical impedance spectroscopy. J. Power Sources, 2005, vol. 148, pp. 78–84. https://doi.org/10.1016/j.jpowsour.2005.02.007
102. Smart M. C., Lucht B. L., Ratnakumar B. V. Electrochemical Characteristics of MCMB and LiNixCo1 ? xO2 Electrodes in Electrolytes with Stabilizing Additives. J. Electrochem. Soc., 2008, vol. 155, pp. A557–A568. https://doi.org/10.1149/1.2928611
103. Li W., Xiao A., Lucht B. L., Smart M. C., Ratnakumar B. V. Surface Analysis of Electrodes from Cells Containing Electrolytes with Stabilizing Additives Exposed to High Temperature. J. Electrochem. Soc., 2008, vol. 155, pp. A648–A657. https://doi.org/10.1149/1.2949507
104. Petibon R., Henry E. C., Burns J. C., Sinha N. N., Dahn J. R. Comparative Study of Vinyl Ethylene Carbonate (VEC) and Vinylene Carbonate (VC) in LiCoO2/Graphite Pouch Cells Using High Precision Coulometry and Electrochemical Impedance Spectroscopy Measurements on Symmetric Cells. J. Electrochem. Soc., 2014, vol. 161, pp. A66–A74. https://doi.org/10.1149/2.030401jes
105. Vetter J., Holzapfel M., Wuersig A., Scheifele W., Ufheil J., Novak P. In situ study on CO2 evolution at lithium-ion battery cathodes. J. Power Sources, 2006, vol. 159, pp. 277–281. https://doi.org/10.1016/j.jpowsour.2006.04.087
106. Holzapfel M., Wursig A., Scheifele W., Vetter J., Novak P. Oxygen, hydrogen, ethylene and CO2 development in lithium-ion batteries. J. Power Sources, 2007, vol. 174, pp. 1156–1160. https://doi.org/10.1016/j.jpowsour.2007.06.182
107. Wu H.-C., Su C.-Y., Shieh D.-T., Yang M.H., Wu N.L. Enhanced High-Temperature Cycle Life of LiFePO4-Based Li-Ion Batteries by Vinylene Carbonate as Electrolyte Additive. Electrochem. Solid-State Lett., 2006, vol. 9, pp. A537–A541. https://doi.org/10.1149/1.2351954
108. Sinha N. N., Smith A. J., Burns J. C., Jain G., Eberman K. W., Scott E., Gardner J. P., Dahn J. R. The Use of Elevated Temperature Storage Experiments to Learn about Parasitic Reactions in Wound LiCoO2 / Graphite Cells. J. Electrochem. Soc., 2011, vol. 158, pp. A1194–A1201. https://doi.org/10.1149/2.007111jes
109. Smith A. J., Burns J. C., Xiong D., Dahn J. R. Interpreting High Precision Coulometry Results on Li-ion Cells. J. Electrochem. Soc., 2011, vol. 158, pp. A1136–A1142. https://doi.org/10.1149/1.3625232
110. Burns J. C., Sinha N. N., Coyle D. J., Jain G., VanElzen C. M., Lamanna W. M., Xiao A., Scott E., Gardner J. P., Dahn J. R. The Impact of Varying the Concentration of Vinylene Carbonate Electrolyte Additive in Wound Li-Ion Cells. J. Electrochem. Soc., 2012, vol. 159, pp. A85–A90. https://doi.org/10.1149/2.028202jes
111. Burns J. C., Jain G., Smith A. J., Eberman K. W., Scott E., Gardner J. P., Dahn J. R. Evaluation of Effects of Additives in Wound Li-Ion Cells Through High Precision Coulometry. J. Electrochem. Soc., 2011, vol. 158, pp. A255–A261. https://doi.org/10.1149/1.3531997
112. Burns J. C., Sinha N. N., Jain G., Ye H., VanElzen C. M., Lamanna W. M., Xiao A., Scott E., Choi J., Dahn J. R. Impedance Reducing Additives and Their Effect on Cell Performance : II. C3H9B3O6. J. Electrochem. Soc., 2012, vol. 159, pp. A1105–A1113. https://doi.org/10.1149/2.078207jes
113. Ma X., Harlow J. E., Li J., Ma L., Hall D. S., Buteau S., Genovese M., Cormier M., Dahn J. R. Hindering Rollover Failure of Li[Ni0.5Mn0.3Co0.2]O2/Graphite Pouch Cells during Long-Term Cycling. J. Electrochem. Soc., 2019, vol. 166, pp. A711–A724. https://doi.org/10.1149/2.0801904jes
114. Harlow J. E., Ma X., Li J., Logan E., Liu Y., Zhang N., Ma L., Glazier S. L., Cormier M. M. E., Genovese M., Buteau S., Cameron A., Stark J. E., Dahn J. R. A Wide Range of Testing Results on an Excellent Lithium-Ion Cell Chemistry to be used as Benchmarks for New Battery Technologies. J. Electrochem. Soc., 2019, vol. 166, pp. A3031–A3044. https://doi.org/10.1149/2.0981913jes
115. Taskovic T., Thompson L. M., Eldesoky A., Lumsden M. D., Dahn J. R. Optimizing Electrolyte Additive Loadings in NMC532/Graphite Cells : Vinylene Carbonate and Ethylene Sulfate. J. Electrochem. Soc., 2021, vol. 168, no. 1, article no. 010514. https://doi.org/10.1149/1945-7111/abd833
116. Petibon R., Aiken C. P., Sinha N. N., Burns J. C., Ye H., VanElzen C. M., Jain G., Trussler S., Dahn J. R. Study of Electrolyte Additives Using Electrochemical Impedance Spectroscopy on Symmetric Cells. J. Electrochem. Soc., 2013, vol. 160, pp. A117–A124. https://doi.org/10.1149/2.005302jes
117. Duong M. V., Tran M. V., Garg A., Nguyen H. V., Huynh T. T. K., Le M. L. P. Machine learning approach in exploring the electrolyte additives effect on cycling performance of LiNi0.5Mn1.5O4 cathode and graphite anode-based lithium-ion cell. Int. J. Energy Res., 2021, vol. 45, pp. 4133–4144. https://doi.org/10.1002/er.6074
118. Shi J., Ding L., Wan Y., Mi L., Chen L., Yang D., Hu Y., Chen W. Achieving long-cycling sodium-ion full cells in ether-based electrolyte with vinylene carbonate additive. J. Energy Chem., 2021, vol. 57, pp. 650–655. https://doi.org/10.1016/j.jechem.2020.10.047