Для цитирования:
Вольфкович Ю. М. Суперконденсаторы, выпускаемые промышленными компаниями // Электрохимическая энергетика. 2024. Т. 24, вып. 1. С. 3-27. DOI: 10.18500/1608-4039-2024-24-1-3-27, EDN: POMDSM
Суперконденсаторы, выпускаемые промышленными компаниями
Предлагается обзор современной научно-технической литературы по суперконденсаторам, выпускаемым промышленными компаниями. Преимуществами суперконденсаторов по сравнению с аккумуляторами являются: большая удельная мощность, большая циклируемость, возможность работы при экстремальных температурах от –50 до +60°C, КПД по энергии может приближаться к 100%, возможность заряда за очень короткое время. В обзоре рассматриваются характеристики суперконденсаторов следующих компаний: Maxwell Technologies (Калифорния, США), NessCap (Республика Корея), ApowerCap (Калифорния, США), Skeleton Technologies (ФРГ, Эстония), EPCOS (Мюнхен, ФРГ), Panasonic (Осака, Япония), Fuji Heavy (Сибуя, Япония), Asahi Glass (Токио, Япония), ESMA (Московская обл., РФ). Рассматриваемые характеристики: удельная энергия, удельная мощность, время полного разряда, время полного заряда, эффективность разряда, количество полных циклов, номинальное напряжение, температурный диапазон.
- Conway B. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. Berlin, Germany, Springer Science & Business Media, 2013. 698 p.
- Bagotsky V. S., Skundin A. M., Volfkovich Yu. M. Electrochemical Power Sources. Batteries, Fuel Cells, Supercapacitors. Jhon Wiely & Sons Inc. Publisher, 2015. 400 p. https://doi.org/10.1002/9781118942857
- Lidorenko N. S. Anomalous electrical capacitance and experimental models of hyperconductivity. Doklady AN SSSR [Reports Academy of Sciences of the USSR], 1974, vol. 216, pp. 1261 (in Russian).
- Volfkovich Yu. M., Serdyuk T. M. Electrochemical Capacitors. Russ. J. Electrochem., 2002, vol. 38, pp. 935–959. https://doi.org/10.1023/A:1020220425954
- Vorotyntsev M. Modern State of Double Layer Study of Solid Metals. In: Bockris J. O’M., Conway B. E., White Ralph E., eds. Modern Aspects of Electrochemistry. New York, Plenum Press, 1986, vol. 17, pp. 131–222. https://doi.org/10.1007/978-1-4613-2133-0_2
- Pandolfo A. G., Hollenkamp A. F. Carbon properties and their role in supercapacitors. J. Power Sources, 2006, vol. 157, pp. 11–27. https://doi.org/10.1016/j.jpowsour.2006.02.065
- Volfkovich Yu. M., Mazin V. M., Urisson N. A. Study of the operation of double-layer capacitors based on carbon materials. Russ. J. Electrochem., 1998, vol. 34, pp. 825–532 (in Russian).
- Gurevich I. G., Volfkovich Yu. M., Bagotsky V. S. Zhidkostnye poristye elektrody [Liquid porous electrodes]. Science and technology. Minsk, Nauka i tekhnika, 1974. 244 p. (in Russian).
- Volfkovich Yu. M., Filippov A. N., Bagotsky V. S. Structural properties of porous materials and powders used in different fields of science and technology. London, Springer Publisher, 2014. 328 p. https://doi.org/10.1007/978-1-4471-6377-0
- Lasrado D., Ahankari S., Kar K. K. Handbook of Nanocomposite Supercapacitor Materials. Springer Series in Materials Science. Springer, 2021. 304 p. https://doi.org/10.1007/978-3-030-43009-2
- Volfkovich Yu. M. Self-Discharge of Supercapacitors: A Review. Russ. J. Electrochem., 2023, vol. 59, pp. 24–36. https://doi.org/10.1134/S1023193523010123
- Diab Y., Venet P., Gualou H., Rojat G. Self-discharge characterization and modeling of electrochemical capacitor used for power electronics applications. IEEE Transactions on Power Electronics, 2008, vol. 24, pp. 510–517. https://doi.org/10.1109/TPEL.2008.2007116
- Kurzweil P., Shamonin M. State-of-charge monitoring by impedance spectroscopy during long-term self-discharge of supercapacitors and Lithium-Ion batteries. Batteries, 2018, vol. 4, article no. 35. https://doi.org/10.3390/batteries4030035
- Liu K., Yu C., Guo W., Ni L., Yu J., Xie Y., Wang Z. Recent research advances of self-discharge in supercapacitors: Mechanisms and suppressing strategies. J. Energy Chemistry, 2021, vol. 58, pp. 2219–2251. https://doi.org/10.1016/j.jechem.2020.09.041
- Innocent Sunday Ike, Sunny E. Iyuke, Iakovos Sigalas. Understanding performance limitation and suppression of leakage current or self-discharge in electrochemical capacitors: A review. Phys. Chem. Chem. Phys., 2016, vol. 18, pp. 661–680. https://doi.org/10.1039/C5CP05459A
- Shen J. F., He Y. J., Ma Z. F. A systematical evaluation of polynomial based equivalent circuit model for charge redistribution dominated self-discharge process in supercapacitors. J. Power Sources, 2016, vol. 303, pp. 294–304. https://doi.org/10.1016/j.jpowsour.2015.11.001
- Saha P., Khanra M. Equivalent circuit model of supercapacitor for self-discharge analysis – A comparative study. 2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES). Paralakhemundi, India, 2016, pp. 1381–1386. https://doi.org/10.1109/SCOPES.2016.7955667
- Brouji H. E., Vinassa J. M., Briat O., Bertrand N., Woirgard E. Ultracapacitors self discharge modelling using a physical description of porous electrode impedance. Vehicle Power and Propulsion Conf. IEEE. Harbin, China, 2008, pp. 1–6. https://doi.org/10.1109/VPPC.2008.4677493
- Bamgbopa M. O., Belaineh D., Mengistie D. A., Edberg J., Engquist I., Berggren M., Tybrandt K. Modelling of heterogeneous ion transport in conducting polymer supercapacitors. J. Mater. Chem. A, 2021, vol. 9, pp. 2184–2194. https://doi.org/10.1039/D0TA09429C
- Rizoug N., Bartholomeus P. Modeling and characterizing supercapacitors using an online method. IEEE Transactions on Industrial Electronics, 2010, vol. 57, pp. 3980–2990. https://doi.org/10.1109/TIE.2010.2042418
- Huang M., Wu M. Qiu Z., Fan L., Lin J., Lin Y. A redox-mediator-doped gel polymer electrolyte applied in quasi-solid-state supercapacitors. J. Appl. Polym. Sci., 2014, vol. 131, article no. 39784. https://doi.org/10.1002/app.39784
- Wang H., Zhou Q., Yao D., Ma H. Suppressing the Self-Discharge of Supercapacitors by Modifying Separators with an Ionic Polyelectrolyte. Adv. Mater. Interfaces, 2018, vol. 5, article no. 1701547. https://doi.org/10.1002/admi.201701547
- Ricketts B. W., Ton-That C. Self-discharge of carbon-based supercapacitors with organic electrolytes. J. Power Sources, 2000, vol. 89, pp. 64–69. https://doi.org/10.1016/S0378-7753(00)00387-6
- Ceraolo M., Lutzemberger G. State-of-charge evaluation of supercapacitors. J. Energy Storage, 2017, vol. 11, pp. 211–218. https://doi.org/10.1016/j.est.2017.03.001
- Rong Lan, John T. S. Irvine, Shanwen Tao. Ammonia and related chemicals as potential indirect hydrogen storage materials. International Journal of Hydrogen Energy, vol. 37, iss. 2, pp. 1482–1494. https://doi.org/10.1016/j.ijhydene.2011.10.004
- Davis M. A., Andreas H. A. Identification and isolation of carbon oxidation and charge redistribution as self-discharge mechanisms in reduced graphene oxide electrochemical capacitor electrodes. Carbon, 2018, vol. 139, pp. 299–308. https://doi.org/10.1016/j.carbon.2018.06.065
- Oickle A. M., Tom J., Andreas H. A. Carbon oxidation and its influence on self-discharge in aqueous electrochemical capacitors. Carbon, 2016, vol. 110, pp. 232–242. https://doi.org/10.1016/j.carbon.2016.09.011
- Satpathy S., Dhar M., Bhattacharyya B. K. Why supercapacitor follows complex time-dependent power law and does not obey normal exponential (e-t(RC)) rule? J. Energy Storage, 2020, vol. 31, article no. 101606. https://doi.org/10.1016/j.est.2020.101606
- Schneuwly A., Gallay R. Properties and applications of supercapacitors from the state-of-the-art to future trends. Proceeding PCIM, 2000, vol. 2, pp. 1–10. Available at: https://www.researchgate.net/publication/260400351_Properties_and_Applications_of_Supercapacitors_From_the_State-of-the-art_to_Future_Trends (accessed 15 December, 2023).
- Ghanbari T., Moshksar E., Hamedi S., Rezaei F., Hosseini Z. Self-discharge modeling of supercapacitors using an optimal time-domain based approach. J. Power Sources, 2021, vol. 495, article no. 229787. https://doi.org/10.1016/j.jpowsour.2021.229787
- Islam Tusher M. M., Hoque M. E., Uddin M. J., Mainuddin A., Mohammad, Uddin M. M. Talukder. A comparative study of a PEMFC, Battery, Super-capacitor based energy source owing to hybrid vehicle. 2019 International Conference on Sustainable Technologies for Industry 4.0 (STI). Dhaka, Bangladesh, 2019, pp. 1–4. https://doi.org/10.1109/STI47673.2019.9068061
- Kaus M., Kowal J., Sauer D. U. Modelling the effects of charge redistribution during self-discharge of supercapacitors. Electrochim. Acta, 2010, vol. 55, pp. 7516–7523. https://doi.org/10.1016/j.electacta.2010.01.002
- Tevi T., Takshi A. Modeling and simulation study of the self-discharge in supercapacitors in presence of a blocking layer. J. Power Sources, 2015, vol. 273, pp. 857–862. https://doi.org/10.1016/j.jpowsour.2014.09.133
- Haque M., Li Q., Smith A. D., Kuzmenko V. Self-discharge and leakage current mitigation of neutral aqueous-based supercapacitor by means of liquid crystal additive. J. Power Sources, 2020, vol. 453, article no. 227897. https://doi.org/10.1016/j.jpowsour.2020.227897
- Liu M., Xia M., Qi R., Ma Q., Zhao M., Zhang Z. Lyotropic Liquid Crystal as an Electrolyte Additive for Suppressing Self-Discharge of Supercapacitors. ChemElectroChem, 2019, vol. 6, pp. 2531–2535. https://doi.org/10.1002/celc.201900173
- Chung J., Park H., Jung C. Electropolymerizable isocyanate-based electrolytic additive to mitigate diffusion-controlled self-discharge for highly stable and capacitive activated carbon supercapacitors. Electrochim. Acta, 2021, vol. 369, article no. 137698. https://doi.org/10.1016/j.electacta.2020.137698
- Ge K., Liu G. Suppression of self-discharge in solid-state supercapacitors using a zwitterionic gel electrolyte. Chem. Commun., 2019, vol. 55, pp. 7167–7170. https://doi.org/10.1039/C9CC02424G
- Mishra R. K., Choi G. J., Sohn Y., Lee S. H., Gwag J. S. Reduced graphene oxide based supercapacitors: Study of self-discharge mechanisms, leakage current and stability via voltage holding tests. Mater. Letters, 2019, vol. 253, pp. 250–254. https://doi.org/10.1016/j.matlet.2019.06.073
- Liu K., Yu C., Guo W., Ni L., Yu J., Xie Y., Wang Z. Recent research advances of self-discharge in supercapacitors: Mechanisms and suppressing strategies. J. Energy Chemistry, 2021, vol. 58, pp. 94–109. https://doi.org/10.1016/j.jechem.2020.09.041
- Shen J. F., He Y. J., Ma Z. F. A systematical evaluation of polynomial based equivalent circuit model for charge redistribution dominated self-discharge process in supercapacitors. J. Power Sources, 2016, vol. 303, pp. 294–304. https://doi.org/10.1016/j.jpowsour.2015.11.001
- Li Z., Wu F. Diagnostic Identification of Self-Discharge Mechanisms for Carbon-Based Supercapacitors with High Energy Density. 2011 Asia-Pacific Power and Energy Engineering Conference. Wuhan, China, 2011, pp. 1–5. https://doi.org/10.1109/APPEEC.2011.5748403
- Volfkovich Yu. M., Rychagov A. Yu., Mikhalin A. A., Sosenkin V. E., Kabachkov E. N., Shulga Yu. M., Michtchenko A. Self-discharge of a supercapacitor with electrodes based on activated carbon cloth. J. Electroanal. Chem., 2022, vol. 910, article no. 116198. https://doi.org/10.1016/j.jelechem.2022.116198
- Zorpette G.. Super charged [ultracapacitors]. IEEE Spectrum, 2005, vol. 42, no. 1, pp. 32–37. https://doi.org/10.1109/MSPEC.2005.1377872
- Buergler B., Faure B., Latif D., Diblik L., Vasina P., Gineste V., Simcak M. Towards supercapacitors in space applications. 11th European Space Power Conference, 2017, vol. 16, article no. 17003. https://doi.org/10.1051/e3sconf/20171617003
- Berrueta A., Ursúa A., Martin S., Eftekhari A., Sanchis P. Supercapacitors: Electrical characteristics, modeling, applications, and future trends. IEEE Transactions on Energy Conversion, 2021, vol. 7, рp. 50869–50896. https://doi.org/10.1109/ACCESS.2019.2908558
- Obreja V. V. On the performance of commercial supercapacitors as storage devices for renewable electrical energy sources. International Conference on Renewable Energy and Power Quality (ICREPQ2007), 2007, vol. 1, no. 5, pp. 531–535. https://doi.org/10.24084/repqj05.329
- Sedlakova V., Sikula J., Majzner J., Sedlak P. Supercapacitor equivalent electrical circuit model based on charges redistribution by diffusion. J. Power Sources, 2015, vol. 286, рp. 58–65. https://doi.org/10.1016/j.jpowsour.2015.03.122
- Kim Y., Kim S., Lee S. Development of ultracapacitor modules for 42-V automotive electrical systems. J. Power Sources, 2003, vol. 114, pp. 366–373. https://doi.org/10.1016/S0378-7753(02)00708-5
- Sani A., Siahaan S., Mubarakah N. Supercapacitor performance evaluation in replacing battery based on charging and discharging current characteristics. Conf. Ser.: Mater. Sci. Eng., 2018, vol. 309, article no. 012078. https://doi.org/10.1088/1757-899X/309/1/012078
- Azais P. Supercapacitors: Materials, Systems, and Applications. Wiley-VCH Verlag GmbH & Co. KGaA, 2013. 539 p. https://doi.org/10.1002/9783527646661
- Zhao Y., Hu L. Zhao S., Wu L. Preparation of MnCo2O4@Ni(OH)2 Core-Shell Flowers for Asymmetric Supercapacitor Materials with Ultrahigh Specific Capacitance. Advanced Functional Materials, 2016, vol. 26, pp. 4085–4093. https://doi.org/10.1002/adfm.201600494
- Schultz L. I., Querques N. P. Tracing the ultracapacitor commercialization pathway. Renewable and Sustainable Energy Reviews, 2014, vol. 39, pp. 1119–1126. https://doi.org/10.1016/j.rser.2014.07.145
- Hosseini H., Shahrokhian S. Advanced binder-free electrode based on core-shell nanostructures of mesoporous Co3V2O8-Ni3V2O8 thin layers@ porous carbon nanofibers for high-performance and flexible all-solid-state supercapacitors. Chemical Engineering Journal, 2018, vol. 341, рp. 10–26. https://doi.org/10.1016/j.cej.2018.02.019
- Yaseen M., Khattak M. A. K., Humayun M., Usman M., Shah S. S., Bibi S., Hasnain B. S. U., Ahmad S. M., Khan A., Shah N., Tahir A. A., Ullah H. A review of supercapacitors: Materials design, modification, and applications. Energies, 2021, vol. 14, article no. 7779. https://doi.org/10.3390/en14227779
- Sevilla M., Mokaya R. Energy storage applications of activated carbons: Supercapacitors and hydrogen storage. Energy Environ. Sci., 2014, vol. 7, pp. 1250–1280. https://doi.org/10.1039/C3EE43525C
- Zhao H., Burke A. F. Fuel cell powered vehicles using supercapacitors-device characteristics, control strategies, and simulation results. Fuel Cells, 2010, vol. 10, iss. 5, pp. 879–896. https://doi.org/10.1002/fuce.200900214
- Burke A., Miller M. The power capability of ultracapacitors and lithium batteries for electric and hybrid vehicle applications. J. Power Sources, 2011, vol. 196, iss. 1, pp. 514–522. https://doi.org/10.1016/j.jpowsour.2010.06.092
- Zhao J., Burke A. F. Electrochemical Capacitors: Performance Metrics and Evaluation by Testing and Analysis. Advanced Energy Materials, 2021, vol. 11, article no. 2002192. https://doi.org/10.1002/aenm.202002192
- Davies A., Yu A. Material Advancements in Supercapacitors: From Activated Carbon to Carbon Nanotube and Graphene. Can. J. Chem. Eng., 2011, vol. 89, pp. 1342–1357. https://doi.org/10.1002/cjce.20586
- 2014 IEEE International Electric Vehicle Conference, Palazzo dei Congressi. Florence, Italy, December 17–19, 2014. Available at: https://ieeexplore.ieee.org/xpl/conhome/7049460/proceeding (accessed 15 December, 2023). https://doi.org/10.1109/IEVC33942.2014
- Wang F., Wu X., Yuan X., Liu Z., Zhang Y., Fu L. Latest advances in supercapacitors: From new electrode materials to novel device designs. Chem. Soc. Rev., 2017, vol. 46, pp. 6816–6854. https://doi.org/10.1039/C7CS00205J
- Yun T. Y., Li X,, Kim S. H., Moon H. C. Dual-function electrochromic supercapacitors displaying real-time capacity in color. ACS Appl. Mater. Interfaces, 2018, vol. 10, pp. 43993–43999. https://doi.org/10.1021/acsami.8b15066