ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


Для цитирования:

Вольфкович Ю. М. Суперконденсаторы, выпускаемые промышленными компаниями // Электрохимическая энергетика. 2024. Т. 24, вып. 1. С. 3-27. DOI: 10.18500/1608-4039-2024-24-1-3-27, EDN: POMDSM

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Полный текст в формате PDF(Ru):
(загрузок: 33)
Язык публикации: 
русский
Тип статьи: 
Обзорная статья
УДК: 
544.6:621.35
EDN: 
POMDSM

Суперконденсаторы, выпускаемые промышленными компаниями

Авторы: 
Вольфкович Юрий Миронович, Институт физической химии и электрохимии им. А. Н. Фрумкина РАН
Аннотация: 

Предлагается обзор современной научно-технической литературы по суперконденсаторам, выпускаемым промышленными компаниями. Преимуществами суперконденсаторов по сравнению с аккумуляторами являются: большая удельная мощность, большая циклируемость, возможность работы при экстремальных температурах от –50 до +60°C, КПД по энергии может приближаться к 100%, возможность заряда за очень короткое время. В обзоре рассматриваются характеристики суперконденсаторов следующих компаний: Maxwell Technologies (Калифорния, США), NessCap (Республика Корея), ApowerCap (Калифорния, США), Skeleton Technologies (ФРГ, Эстония), EPCOS (Мюнхен, ФРГ), Panasonic (Осака, Япония), Fuji Heavy (Сибуя, Япония), Asahi Glass (Токио, Япония), ESMA (Московская обл., РФ). Рассматриваемые характеристики: удельная энергия, удельная мощность, время полного разряда, время полного заряда, эффективность разряда, количество полных циклов, номинальное напряжение, температурный диапазон.

Благодарности: 
Работа выполнена при поддержке Министерства науки и высшего образования Российской Федерации.
Список источников: 
  1.   Conway B. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. Berlin, Germany, Springer Science & Business Media, 2013. 698 p.
  2.   Bagotsky V. S., Skundin A. M., Volfkovich Yu. M. Electrochemical Power Sources. Batteries, Fuel Cells, Supercapacitors. Jhon Wiely & Sons Inc. Publisher, 2015. 400 p. https://doi.org/10.1002/9781118942857
  3.   Lidorenko N. S. Anomalous electrical capacitance and experimental models of hyperconductivity. Doklady AN SSSR [Reports Academy of Sciences of the USSR], 1974, vol. 216, pp. 1261 (in Russian).
  4.   Volfkovich Yu. M., Serdyuk T. M. Electrochemical Capacitors. Russ. J. Electrochem., 2002, vol. 38, pp. 935–959. https://doi.org/10.1023/A:1020220425954
  5.   Vorotyntsev M. Modern State of Double Layer Study of Solid Metals. In: Bockris J. O’M., Conway B. E., White Ralph E., eds. Modern Aspects of Electrochemistry. New York, Plenum Press, 1986, vol. 17, pp. 131–222. https://doi.org/10.1007/978-1-4613-2133-0_2
  6.   Pandolfo A. G., Hollenkamp A. F. Carbon properties and their role in supercapacitors. J. Power Sources, 2006, vol. 157, pp. 11–27. https://doi.org/10.1016/j.jpowsour.2006.02.065
  7.   Volfkovich Yu. M., Mazin V. M., Urisson N. A. Study of the operation of double-layer capacitors based on carbon materials. Russ. J. Electrochem., 1998, vol. 34, pp. 825–532 (in Russian).
  8.   Gurevich I. G., Volfkovich Yu. M., Bagotsky V. S. Zhidkostnye poristye elektrody [Liquid porous electrodes]. Science and technology. Minsk, Nauka i tekhnika, 1974. 244 p. (in Russian).
  9.   Volfkovich Yu. M., Filippov A. N., Bagotsky V. S. Structural properties of porous materials and powders used in different fields of science and technology. London, Springer Publisher, 2014. 328 p. https://doi.org/10.1007/978-1-4471-6377-0
  10.  Lasrado D., Ahankari S., Kar K. K. Handbook of Nanocomposite Supercapacitor Materials. Springer Series in Materials Science. Springer, 2021. 304 p. https://doi.org/10.1007/978-3-030-43009-2
  11.  Volfkovich Yu. M. Self-Discharge of Supercapacitors: A Review. Russ. J. Electrochem., 2023, vol. 59, pp. 24–36. https://doi.org/10.1134/S1023193523010123
  12.  Diab Y., Venet P., Gualou H., Rojat G. Self-discharge characterization and modeling of electrochemical capacitor used for power electronics applications. IEEE Transactions on Power Electronics, 2008, vol. 24, pp. 510–517. https://doi.org/10.1109/TPEL.2008.2007116
  13.  Kurzweil P., Shamonin M. State-of-charge monitoring by impedance spectroscopy during long-term self-discharge of supercapacitors and Lithium-Ion batteries. Batteries, 2018, vol. 4, article no. 35. https://doi.org/10.3390/batteries4030035
  14.  Liu K., Yu C., Guo W., Ni L., Yu J., Xie Y., Wang Z. Recent research advances of self-discharge in supercapacitors: Mechanisms and suppressing strategies. J. Energy Chemistry, 2021, vol. 58, pp. 2219–2251. https://doi.org/10.1016/j.jechem.2020.09.041
  15. Innocent Sunday Ike, Sunny E. Iyuke, Iakovos Sigalas. Understanding performance limitation and suppression of leakage current or self-discharge in electrochemical capacitors: A review. Phys. Chem. Chem. Phys., 2016, vol. 18, pp. 661–680. https://doi.org/10.1039/C5CP05459A
  16.  Shen J. F., He Y. J., Ma Z. F. A systematical evaluation of polynomial based equivalent circuit model for charge redistribution dominated self-discharge process in supercapacitors. J. Power Sources, 2016, vol. 303, pp. 294–304. https://doi.org/10.1016/j.jpowsour.2015.11.001
  17.  Saha P., Khanra M. Equivalent circuit model of supercapacitor for self-discharge analysis – A comparative study. 2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES). Paralakhemundi, India, 2016, pp. 1381–1386. https://doi.org/10.1109/SCOPES.2016.7955667
  18.  Brouji H. E., Vinassa J. M., Briat O., Bertrand N., Woirgard E. Ultracapacitors self discharge modelling using a physical description of porous electrode impedance. Vehicle Power and Propulsion Conf. IEEE. Harbin, China, 2008, pp. 1–6. https://doi.org/10.1109/VPPC.2008.4677493
  19.  Bamgbopa M. O., Belaineh D., Mengistie D. A., Edberg J., Engquist I., Berggren M., Tybrandt K. Modelling of heterogeneous ion transport in conducting polymer supercapacitors. J. Mater. Chem. A, 2021, vol. 9, pp. 2184–2194. https://doi.org/10.1039/D0TA09429C
  20.  Rizoug N., Bartholomeus P. Modeling and characterizing supercapacitors using an online method. IEEE Transactions on Industrial Electronics, 2010, vol. 57, pp. 3980–2990. https://doi.org/10.1109/TIE.2010.2042418
  21.  Huang M., Wu M. Qiu Z., Fan L., Lin J., Lin Y. A redox-mediator-doped gel polymer electrolyte applied in quasi-solid-state supercapacitors. J. Appl. Polym. Sci., 2014, vol. 131, article no. 39784. https://doi.org/10.1002/app.39784
  22.  Wang H., Zhou Q., Yao D., Ma H. Suppressing the Self-Discharge of Supercapacitors by Modifying Separators with an Ionic Polyelectrolyte. Adv. Mater. Interfaces, 2018, vol. 5, article no. 1701547. https://doi.org/10.1002/admi.201701547
  23.  Ricketts B. W., Ton-That C. Self-discharge of carbon-based supercapacitors with organic electrolytes. J. Power Sources, 2000, vol. 89, pp. 64–69. https://doi.org/10.1016/S0378-7753(00)00387-6
  24.  Ceraolo M., Lutzemberger G. State-of-charge evaluation of supercapacitors. J. Energy Storage, 2017, vol. 11, pp. 211–218. https://doi.org/10.1016/j.est.2017.03.001
  25. Rong Lan, John T. S. Irvine, Shanwen Tao. Ammonia and related chemicals as potential indirect hydrogen storage materials. International Journal of Hydrogen Energy, vol. 37, iss. 2, pp. 1482–1494. https://doi.org/10.1016/j.ijhydene.2011.10.004
  26.  Davis M. A., Andreas H. A. Identification and isolation of carbon oxidation and charge redistribution as self-discharge mechanisms in reduced graphene oxide electrochemical capacitor electrodes. Carbon, 2018, vol. 139, pp. 299–308. https://doi.org/10.1016/j.carbon.2018.06.065
  27.  Oickle A. M., Tom J., Andreas H. A. Carbon oxidation and its influence on self-discharge in aqueous electrochemical capacitors. Carbon, 2016, vol. 110, pp. 232–242. https://doi.org/10.1016/j.carbon.2016.09.011
  28.  Satpathy S., Dhar M., Bhattacharyya B. K. Why supercapacitor follows complex time-dependent power law and does not obey normal exponential (e-t(RC)) rule? J. Energy Storage, 2020, vol. 31, article no. 101606. https://doi.org/10.1016/j.est.2020.101606
  29.  Schneuwly A., Gallay R. Properties and applications of supercapacitors from the state-of-the-art to future trends. Proceeding PCIM, 2000, vol. 2, pp. 1–10. Available at: https://www.researchgate.net/publication/260400351_Properties_and_Applications_of_Supercapacitors_From_the_State-of-the-art_to_Future_Trends (accessed 15 December, 2023).
  30.  Ghanbari T., Moshksar E., Hamedi S., Rezaei F., Hosseini Z. Self-discharge modeling of supercapacitors using an optimal time-domain based approach. J. Power Sources, 2021, vol. 495, article no. 229787. https://doi.org/10.1016/j.jpowsour.2021.229787
  31. Islam Tusher M. M., Hoque M. E., Uddin M. J., Mainuddin A., Mohammad, Uddin M. M. Talukder. A comparative study of a PEMFC, Battery, Super-capacitor based energy source owing to hybrid vehicle. 2019 International Conference on Sustainable Technologies for Industry 4.0 (STI). Dhaka, Bangladesh, 2019, pp. 1–4. https://doi.org/10.1109/STI47673.2019.9068061
  32.  Kaus M., Kowal J., Sauer D. U. Modelling the effects of charge redistribution during self-discharge of supercapacitors. Electrochim. Acta, 2010, vol. 55, pp. 7516–7523. https://doi.org/10.1016/j.electacta.2010.01.002
  33.  Tevi T., Takshi A. Modeling and simulation study of the self-discharge in supercapacitors in presence of a blocking layer. J. Power Sources, 2015, vol. 273, pp. 857–862. https://doi.org/10.1016/j.jpowsour.2014.09.133
  34.  Haque M., Li Q., Smith A. D., Kuzmenko V. Self-discharge and leakage current mitigation of neutral aqueous-based supercapacitor by means of liquid crystal additive. J. Power Sources, 2020, vol. 453, article no. 227897. https://doi.org/10.1016/j.jpowsour.2020.227897
  35.  Liu M., Xia M., Qi R., Ma Q., Zhao M., Zhang Z. Lyotropic Liquid Crystal as an Electrolyte Additive for Suppressing Self-Discharge of Supercapacitors. ChemElectroChem, 2019, vol. 6, pp. 2531–2535. https://doi.org/10.1002/celc.201900173
  36.  Chung J., Park H., Jung C. Electropolymerizable isocyanate-based electrolytic additive to mitigate diffusion-controlled self-discharge for highly stable and capacitive activated carbon supercapacitors. Electrochim. Acta, 2021, vol. 369, article no. 137698. https://doi.org/10.1016/j.electacta.2020.137698
  37.  Ge K., Liu G. Suppression of self-discharge in solid-state supercapacitors using a zwitterionic gel electrolyte. Chem. Commun., 2019, vol. 55, pp. 7167–7170. https://doi.org/10.1039/C9CC02424G
  38.  Mishra R. K., Choi G. J., Sohn Y., Lee S. H., Gwag J. S. Reduced graphene oxide based supercapacitors: Study of self-discharge mechanisms, leakage current and stability via voltage holding tests. Mater. Letters, 2019, vol. 253, pp. 250–254. https://doi.org/10.1016/j.matlet.2019.06.073
  39.  Liu K., Yu C., Guo W., Ni L., Yu J., Xie Y., Wang Z. Recent research advances of self-discharge in supercapacitors: Mechanisms and suppressing strategies. J. Energy Chemistry, 2021, vol. 58, pp. 94–109. https://doi.org/10.1016/j.jechem.2020.09.041
  40.  Shen J. F., He Y. J., Ma Z. F. A systematical evaluation of polynomial based equivalent circuit model for charge redistribution dominated self-discharge process in supercapacitors. J. Power Sources, 2016, vol. 303, pp. 294–304. https://doi.org/10.1016/j.jpowsour.2015.11.001
  41. Li Z., Wu F. Diagnostic Identification of Self-Discharge Mechanisms for Carbon-Based Supercapacitors with High Energy Density. 2011 Asia-Pacific Power and Energy Engineering Conference. Wuhan, China, 2011, pp. 1–5. https://doi.org/10.1109/APPEEC.2011.5748403
  42.  Volfkovich Yu. M., Rychagov A. Yu., Mikhalin A. A., Sosenkin V. E., Kabachkov E. N., Shulga Yu. M., Michtchenko A. Self-discharge of a supercapacitor with electrodes based on activated carbon cloth. J. Electroanal. Chem., 2022, vol. 910, article no. 116198. https://doi.org/10.1016/j.jelechem.2022.116198
  43.  Zorpette G.. Super charged [ultracapacitors]. IEEE Spectrum, 2005, vol. 42, no. 1, pp. 32–37. https://doi.org/10.1109/MSPEC.2005.1377872
  44.  Buergler B., Faure B., Latif D., Diblik L., Vasina P., Gineste V., Simcak M. Towards supercapacitors in space applications. 11th European Space Power Conference, 2017, vol. 16, article no. 17003. https://doi.org/10.1051/e3sconf/20171617003
  45.  Berrueta A., Ursúa A., Martin S., Eftekhari A., Sanchis P. Supercapacitors: Electrical characteristics, modeling, applications, and future trends. IEEE Transactions on Energy Conversion, 2021, vol. 7, рp. 50869–50896. https://doi.org/10.1109/ACCESS.2019.2908558
  46.  Obreja V. V. On the performance of commercial supercapacitors as storage devices for renewable electrical energy sources. International Conference on Renewable Energy and Power Quality (ICREPQ2007), 2007, vol. 1, no. 5, pp. 531–535. https://doi.org/10.24084/repqj05.329
  47.  Sedlakova V., Sikula J., Majzner J., Sedlak P. Supercapacitor equivalent electrical circuit model based on charges redistribution by diffusion. J. Power Sources, 2015, vol. 286, рp. 58–65. https://doi.org/10.1016/j.jpowsour.2015.03.122
  48.  Kim Y., Kim S., Lee S. Development of ultracapacitor modules for 42-V automotive electrical systems. J. Power Sources, 2003, vol. 114, pp. 366–373. https://doi.org/10.1016/S0378-7753(02)00708-5
  49.  Sani A., Siahaan S., Mubarakah N. Supercapacitor performance evaluation in replacing battery based on charging and discharging current characteristics. Conf. Ser.: Mater. Sci. Eng., 2018, vol. 309, article no. 012078. https://doi.org/10.1088/1757-899X/309/1/012078
  50.  Azais P. Supercapacitors: Materials, Systems, and Applications. Wiley-VCH Verlag GmbH & Co. KGaA, 2013. 539 p. https://doi.org/10.1002/9783527646661
  51.  Zhao Y., Hu L. Zhao S., Wu L. Preparation of MnCo2O4@Ni(OH)2 Core-Shell Flowers for Asymmetric Supercapacitor Materials with Ultrahigh Specific Capacitance. Advanced Functional Materials, 2016, vol. 26, pp. 4085–4093. https://doi.org/10.1002/adfm.201600494
  52.  Schultz L. I., Querques N. P. Tracing the ultracapacitor commercialization pathway. Renewable and Sustainable Energy Reviews, 2014, vol. 39, pp. 1119–1126. https://doi.org/10.1016/j.rser.2014.07.145
  53.  Hosseini H., Shahrokhian S. Advanced binder-free electrode based on core-shell nanostructures of mesoporous Co3V2O8-Ni3V2O8 thin layers@ porous carbon nanofibers for high-performance and flexible all-solid-state supercapacitors. Chemical Engineering Journal, 2018, vol. 341, рp. 10–26. https://doi.org/10.1016/j.cej.2018.02.019
  54.  Yaseen M., Khattak M. A. K., Humayun M., Usman M., Shah S. S., Bibi S., Hasnain B. S. U., Ahmad S. M., Khan A., Shah N., Tahir A. A., Ullah H. A review of supercapacitors: Materials design, modification, and applications. Energies, 2021, vol. 14, article no. 7779. https://doi.org/10.3390/en14227779
  55.  Sevilla M., Mokaya R. Energy storage applications of activated carbons: Supercapacitors and hydrogen storage. Energy Environ. Sci., 2014, vol. 7, pp. 1250–1280. https://doi.org/10.1039/C3EE43525C
  56.  Zhao H., Burke A. F. Fuel cell powered vehicles using supercapacitors-device characteristics, control strategies, and simulation results. Fuel Cells, 2010, vol. 10, iss. 5, pp. 879–896. https://doi.org/10.1002/fuce.200900214
  57.  Burke A., Miller M. The power capability of ultracapacitors and lithium batteries for electric and hybrid vehicle applications. J. Power Sources, 2011, vol. 196, iss. 1, pp. 514–522. https://doi.org/10.1016/j.jpowsour.2010.06.092
  58.  Zhao J., Burke A. F. Electrochemical Capacitors: Performance Metrics and Evaluation by Testing and Analysis. Advanced Energy Materials, 2021, vol. 11, article no. 2002192. https://doi.org/10.1002/aenm.202002192
  59.  Davies A., Yu A. Material Advancements in Supercapacitors: From Activated Carbon to Carbon Nanotube and Graphene. Can. J. Chem. Eng., 2011, vol. 89, pp. 1342–1357. https://doi.org/10.1002/cjce.20586
  60. 2014 IEEE International Electric Vehicle Conference, Palazzo dei Congressi. Florence, Italy, December 17–19, 2014. Available at: https://ieeexplore.ieee.org/xpl/conhome/7049460/proceeding (accessed 15 December, 2023). https://doi.org/10.1109/IEVC33942.2014
  61.  Wang F., Wu X., Yuan X., Liu Z., Zhang Y., Fu L. Latest advances in supercapacitors: From new electrode materials to novel device designs. Chem. Soc. Rev., 2017, vol. 46, pp. 6816–6854. https://doi.org/10.1039/C7CS00205J
  62.  Yun T. Y., Li X,, Kim S. H., Moon H. C. Dual-function electrochromic supercapacitors displaying real-time capacity in color. ACS Appl. Mater. Interfaces, 2018, vol. 10, pp. 43993–43999. https://doi.org/10.1021/acsami.8b15066
Поступила в редакцию: 
28.12.2023
Принята к публикации: 
12.03.2024
Опубликована: 
29.03.2024