Для цитирования:
Ковшутин А. С., Паньшин Е. В., Бурашникова М. М. Получение и электрохимические свойства электродного материала на основе легированных азотом углеродных нанотрубок для гибридных суперконденсаторов // Электрохимическая энергетика. 2025. Т. 25, вып. 2. С. 95-111. DOI: 10.18500/1608-4039-2025-25-2-95-111, EDN: USBZSS
Получение и электрохимические свойства электродного материала на основе легированных азотом углеродных нанотрубок для гибридных суперконденсаторов
Апробирована методика получения легированных азотом углеродных нанотрубок. В качестве источника азота использовался полианилин, химически синтезированный на поверхности нанотрубок с последующей карбонизацией. Исследованы электрохимические характеристики электродов на основе полученного углеродного материала для гибридных суперконденсаторов с кислотным электролитом. Показано, что легирование азотом углеродных нанотрубок повышает емкостных характеристик электродов.
- Goodenough J. B. Evolution of strategies for modern rechargeable batteries. Acc. Chem. Res., 2012, vol. 46, pp. 1053–1061. https://doi.org/10.1021/ar2002705
- Naoi K., Naoi W., Aoyagi S., Miyamoto J., Kamino T. New generation “Nanohybrid Supercapacitor”. Acc. Chem. Res., 2013, vol. 46, pp. 1075–1083. https://doi.org/10.1021/ar200308h
- Kovalenko I., Zdyrko B., Magasinski A., Hertzberg B., Milicev Z., Burtovyy R., Luzinov I., Yushin G. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science, 2011, vol. 333, pp. 75–79. https://doi.org/10.1126/science.1209150
- Kotz R., Carlen M. Principles and applications of electrochemical capacitors. Electrochim. Acta, 2000, vol. 45, pp. 2483–2498. https://doi.org/10.1016/S0013-4686(00)00354-6
- Miller J. R., Burke A. F. Electrochemical capacitors: Challenges and opportunities for real-world applications. Electrochem. Soc. Interf., 2008, vol. 17, pp. 53–57.
- Huang X., Yu H., Chen J., Lu Z., Yazami R., Hng H. H. Ultrahigh rate capabilities of lithium-ion batteries from 3d ordered hierarchically porous electrodes with entrapped active nanoparticles conguration. Adv. Mater., 2014, vol. 26, pp. 1296–1303.
- Liu C., Li F., Ma L. P., Cheng H. M. Advanced materials for energy storage. Adv. Mater., 2010, vol. 22, pp. E28–E62. https://doi.org/10.1002/adma.200903328
- Chaudhuri R. G., Paria S. Core/Shell Nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev., 2012, vol. 112, pp. 2373–2433. https://doi.org/10.1021/cr100449n
- Zhu J., Yang D., Yin Z., Yan Q., Zhang H. Graphene and graphene-based materials for energy storage applications. Small, 2014, vol. 10, pp. 3480–3498. https://doi.org/10.1002/smll.201303202
- Zhang Y. B., Small J. P., Pontius W. V., Kim P. Fabrication and electric field dependent transport measurements of mesoscopic graphite devices. Appl. Phys. Lett., 2005, vol. 86, art. 073104. https://doi.org/10.1063/1.1862334
- Hernandez Y., Nicolosi V., Lotya M., Blighe F. M., Sun Z., De S., Mcgovern I. T., Holland B., Byrne M., Gun’ko Y. K., Boland J. J., Niraj P., Duesberg G., Krishnamurthy S., Goodhue R., Hutchison J., Scardaci V., Ferrari A. C., Coleman J. N. Highyield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol., 2008, vol. 3, pp. 563–568. https://doi.org/10.1038/nnano.2008.215
- Yu Q., Lian J., Siriponglert S., Li H., Chen Y. P., Pei S. S. Graphene segregated on ni surfaces and transferred to insulators. Appl.Phys. Lett., 2008, vol. 93, art. 113103. https://doi.org/10.1063/1.2982585
- Peng L., Xu Z., Liu Z., Wei Y., Sun H., Li Z., Zhao X., Gao C. An iron-basedgreen approach to 1-h production of single-layer graphene oxide. Nat. Commun., 2015, vol. 6, art. 5716. https://doi.org/10.1038/ncomms6716
- Becerril H. A., Mao J., Liu Z., Stoltenberg R. M., Bao Z., Chen Y. Valuation of solutionprocessed reduced graphene oxide films as transparent conductors. ACS Nano, 2008, vol. 2, pp. 463–470. https://doi.org/10.1021/nn700375n
- Presser V., Heon M., Gogotsi Y. Carbidederived carbons – from porous networks to nanotubes and graphene. Adv. Funct. Mater., 2011, vol. 21, pp. 810–833. https://doi.org/10.1002/adfm.201002094
- Zhang L. L., Zhao X. S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev., 2009, vol. 38, pp. 2520–2531. https://doi.org/10.1039/B813846J
- Lu W., Hartman R., Qu L., Dai L. Nanocomposite electrodes for high-performance. supercapacitors. J. Phys. Chem. Lett., 2011, vol. 2, pp. 655–660. https://doi.org/10.1021/jz200104n
- Hahm M. G. Leela Mohana Reddy A., Cole D. P., Rivera M., Vento J. A., Nam J., Jung H. Y., Kim Y. L., Narayanan N. T., Hashim D. P., Galande C., Jung Y. J., Bundy M., Karna S., Ajayan P. M., Vajtai R. Carbon nanotube-nanocup hybrid structures for high power supercapacitor applications. Nano Lett., 2012, vol. 12, pp. 5616–5621. https://doi.org/10.1021/nl3027372
- Li P., Kong C., Shang Y., Shi E., Yu Y., Qian W., Wei F., Wei J., Wang K., Zhu H., Cao A., Wu D. Highly deformation-tolerant carbon nanotube sponges as supercapacitor electrodes. Nanoscale, 2013, vol. 5, pp. 8472–8479. https://doi.org/10.1039/C3NR01932B
- Zheng Y., Li D., Ahmed Z., Park J., Zhou C., Yang C. Y. Carbon nanotube-on-graphene heterostructures. Journal of Electronic Materials, 2020, vol. 49, pp. 6806– 6816. https://doi.org/10.1007/s11664-020-08446-7
- You B., Wang L., Yao L., Yang J. Three dimensional n-doped graphene–CNT networks for supercapacitor. Chem. Commun., 2013, vol. 49, pp. 5016–5018. https://doi.org/10.1039/C3CC41949E
- Wang S., Dryfe R. A. W. Graphene oxideassisted deposition of carbon nanotubes on carbon cloth as advanced binder-free electrodes for flexible supercapacitors. J. Mater. Chem. A, 2013, vol. 1, pp. 5279–5283. https://doi.org/10.1039/C3TA10436B
- Jha N., Ramesh P., Bekyarova E., Itkis M. E., Haddon R. C. High energy density supercapacitor based on a hybrid carbon nanotube–reduced graphite oxide architecture. Adv. Energy Mater., 2012, vol. 2, pp. 438–444. https://doi.org/10.1002/aenm.201100697
- Du F., Yu D., Dai L., Ganguli S., Varshney V., Roy A. K. Preparation of tunable 3d pillared carbon nanotubegraphene networks for high-performance capacitance. Chem. Mater., 2011, vol. 23, pp. 4810–4816. https://doi.org/10.1021/cm2021214
- Chmiola J., Largeot C., Taberna P. L., Simon P., Gogotsi Y. Desolvation of ions in subnanometer pores and its effect on capacitance and double-layer theory. Angew. Chem. Int. Ed., 2008, vol. 47, pp. 3392–3395. https://doi.org/10.1002/anie.200704894
- Morozan A., Jaouen F. Metal organic frameworks for electrochemical applications. Energy Environ. Sci., 2012, vol. 5, pp. 9269–9290. https://doi.org/10.1039/C2EE22989G
- Betard A., Fischer R. A. Metal-organic framework thin films: From fundamentals to applications. Chem. Rev., 2012, vol. 112, pp. 1055–1083. https://doi.org/10.1021/cr200167v
- Chen Y. Z., Wang C., Wu Z. Y., Xiong Y., Xu Q., Yu S. H., Jiang H. L. From bimetallic metalorganic framework to porous carbon: High surface area and multicomponent active dopants for excellent electrocatalysis. Adv. Mater., 2015, vol. 27, pp. 5010–5016. https://doi.org/10.1002/adma.201502315
- Chen L. F., Zhang X. D., Liang H. W., Kong M., Guan Q. F., Chen P., Wu Z. Y., Yu S. H. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. Acs Nano, 2012, vol. 6, pp. 7092–7102. https://doi.org/10.1021/nn302147s
- You B., Yin P., An L. Multifunctional electroactive heteroatom-doped carbon aerogels. Small, 2014, vol. 10, pp. 4352–4361. https://doi.org/10.1002/smll.201401192
- Titirici M., White R. J. Brun N., Budarin V. L., Su D. S., Monte F., Clark J. H., Maclachlan M. J. Sustainable carbon materials. Chem. Soc. Rev., 2015, vol. 44, pp. 250–290. https://doi.org/10.1039/C4CS00232F
- Dreyer D. R., Park S., Bielawski C. W., Ruoff R. S. The chemistry of graphene oxide. Chem. Soc. Rev., 2010, vol. 39, pp. 228–240. https://doi.org/10.1039/B917103G
- Zhao J., Lai H., Lyu Z., Jiang Y., Xie K., Wang X., Wu Q., Yang L., In Z., Ma Y., Liu J., Hu Z. Hydrophilic hierarchical nitrogen-doped carbon nanocages for ultrahigh supercapacitive performance. Adv. Mater., 2015, vol. 27, pp. 3541–3545. https://doi.org/10.1002/adma.201500945
- Wang D. W., Li F., Chen Z. G., Lu G. Q., Cheng H. M. Synthesis and electrochemical property of boron-doped mesoporous carbon in supercapacitor. Chem. Mater., 2008, vol. 20, pp. 7195–7200.
- Martins Miwa T. B., da Silva R. H., Fazzio A. J. R. Electronic and transport properties of boron-doped graphene nanoribbons. Phys. Rev. Lett., 2007, vol. 98, art. 196803. https://doi.org/10.1103/PhysRevLett.98.196803
- Han J., Zhang L. L., Lee S., Oh J., Lee K. S., Potts J. R., Ji J., Zhao X., Ruoffand R. S., Park S. Generation of b-doped graphene nanoplatelets using a solution process and their supercapacitor applications. Acs Nano, 2013, vol. 7, pp. 19–26. https://doi.org/10.1021/nn3034309
- Chen L., Huang Z., Liang H., Gao H., Yu S. Three-Dimensional Heteroatom-Doped Carbon Nanofiber Networks Derived from Bacterial Cellulose for Supercapacitors Adv. Funct. Mater., 2014, vol. 24, pp. 5104–5111. https://doi.org/10.1002/adfm.201400590
- Li B., Dai F., Xiao Q., Yang L., Shen J., Zhang C., Cai M. Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy Environ. Sci., 2015, vol. 9, pp. 102–106.
- Deng Y., Xie Y., Zou K., Ji X. Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors. J. Mater. Chem. A, 2016, vol. 4, pp. 1144–1173. https://doi.org/10.1039/C5TA08620E
- Cao B., Zhang B., Jiang X., Zhang Y., Pan C. Direct synthesis of high concentration n-doped coiled carbon nanofibers from amine flames and its electrochemical properties. J. Power Sources, 2011, vol. 196, pp. 7868– 7873. https://doi.org/10.1016/j.jpowsour.2011.05.016
- Qiu Y., Zhang X., Yang S. High performance supercapacitors based on highlyconductive nitrogen-doped graphene sheets. Phys. Chem. Chem. Phys., 2011, vol. 13, pp. 12554–12558. https://doi.org/10.1039/C1CP21148J
- Chen P., Yang J. J., Li S. S., Wang Z., Xiao T. Y., Qian Y. H., Yu S. H. Hydrothermal synthesis of macroscopic nitrogen-d oped graphene hydrogels for ultrafast supercapacitor. Nano Energy, 2013, vol. 2, pp. 249–256.
- Wen Z., Wang X., Mao S., Bo Z., Kim H., Cui S., Lu G., Feng X., Chen J. Crumpled nitrogen-doped graphene nanosheets with ultrahigh pore volume for highperformance supercapacitor. Adv. Mater., 2012, vol. 24, pp. 5610–5616. https://doi.org/10.1002/adma.201201920
- Jeong H. M., Lee J. W., Shin W. H., Choi Y. J., Shin H. J., Kang J. K., Choi J. W. Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett., 2011, vol. 11, pp. 2472–2477. https://doi.org/10.1021/nl2009058
- Wei J., Zhou D., Sun Z., Deng Y., Xia Y., Zhao D. A controllable synthesis of rich nitrogen-doped ordered mesoporous carbon for CO2 capture and supercapacitors. Adv. Funct. Mater., 2013, vol. 23, pp. 2322– 2328. https://doi.org/10.1002/adfm.201202764
- Lin T., Chen I. W., Liu F., Yang C., Bi H., Xu F., Huang F. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science, 2015, vol. 350, pp. 1508–1513. https://doi.org/10.1126/science.aab3798
- Zhang S., Tsuzuki S., Ueno K., Dokko K., Watanabe M. Upper limit of nitrogen content in carbon materials. Angew. Chem. Int. Ed., 2015, vol. 54, pp. 1302– 1306. https://doi.org/10.1002/anie.201410234
- Long C., Qi D., Wei T., Yan J., Jiang L., Fan Z. Nitrogen-doped carbon networks for high energy density supercapacitors derived from polyaniline coated bacterial cellulose. Adv. Funct. Mater., 2014, vol. 24, pp. 3953– 3961. https://doi.org/10.1002/adfm.201304269
- Hao L., Luo B., Li X., Jin M., Fang Y., Tang Z., Jia Y., Liang M., Thomas A., Yang J., Zhi L. Terephthalonitrile-derived nitrogen-rich networks for high performance supercapacitors. Energy Environ. Sci., 2012, vol. 5, pp. 9747–9751. https://doi.org/10.1039/C2EE22814A
- Guo D., Mi J., Hao G., Dong W., Xiong G., Li W., Lu A. Ionic liquid C16mimBF4 assisted synthesis of poly(benzoxazine-co-resol)-based hierarchically porous carbons with superior performance in supercapacitors. Energy.Environ. Sci., 2013, vol. 6, pp. 652–659. https://doi.org/10.1039/C2EE23127A
- Jin Z. Y., Lu A. H., Xu Y. Y., Zhang J. T., Li W. C. Ionic liquid-assisted synthesis of microporous carbon nanosheets for use in high rate and long cycle life supercapacitors. Adv. Mater., 2014, vol. 26, pp. 3700– 3705. https://doi.org/10.1002/adma.201306273
- Zhu H., Yin J., Wang X., Wang H., Yang X. Microorganism-derived heteroatom-doped carbon materials for oxygen reduction and supercapacitors. Adv. Funct. Mater., 2013, vol. 23, pp. 1305–1312. https://doi.org/10.1002/adfm.201201643
- Li Z., Xu Z., Tan X., Wang H., Holt C. M. B., Stephenson T., Olsen B. C., Mitlin D. Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors. Energy Environ. Sci., 2013, vol. 6, pp. 871–878. https://doi.org/10.1039/C2EE23599D
- Chen X., Chen X., Xu X., Yang Z., Liu Z., Zhang L., Xu X., Chenand Y., Huang S. Sulfur-doped porous reduced graphene oxide hollow nanosphere frameworks as metal-free electrocatalysts for oxygen reduction reaction and as supercapacitor electrode materials. Nanoscale, 2014, vol. 6, pp. 13740–13747. https://doi.org/10.1039/C4NR04783D
- Parveen N., Ansari M. O., Ansaria S. A., Cho M. H. Simultaneous sulfur doping and exfoliation of graphene from graphite using an electrochemical method for supercapacitor electrode materials. J. Mater. Chem. A, 2016, vol. 4, pp. 233–240. https://doi.org/10.1039/C5TA07963B
- Lai L., Yang H., Wang L., Teh B. K., Zhong J., Chou H., Chen L., Chen W., Shen Z., Ruoff R. S., Lin J. Preparation of supercapacitor electrodes through selection of graphene surface functionalities. ACS Nano, 2012, vol. 6, pp. 5941–5951. https://doi.org/10.1021/nn3008096
- Assresahegn B. D., Belanger D. Multifunctional carbon for electrochemical double-layer capacitors. Adv. Funct. Mater., 2015, vol. 25, pp. 6775–6785. https://doi.org/10.1002/adfm.201503738
- Shen J., Liu A., Tu Y., Foo G., Yeo C., ChanPark M. B., Jiang R., Chen Y. How carboxylic groups improve the performance of single-walled carbon nanotube electrochemical capacitors? Energy Environ. Sci., 2011, vol. 4, pp. 4220–4229. https://doi.org/10.1039/C1EE01479J
- Tian W., Gao Q., Tan Y., Zhang Y., Xu J., Li Z., Yang K., Zhu L., Liu Z. Three-dimensional functionalized graphenes with systematical control over the interconnected pores and surface functional groups for high energy performance supercapacitors. Carbon, 2015, vol. 85, pp. 351–362. https://doi.org/10.1016/j.carbon.2015.01.001