ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


Для цитирования:

Ковшутин А. С., Паньшин Е. В., Бурашникова М. М. Получение и электрохимические свойства электродного материала на основе легированных азотом углеродных нанотрубок для гибридных суперконденсаторов // Электрохимическая энергетика. 2025. Т. 25, вып. 2. С. 95-111. DOI: 10.18500/1608-4039-2025-25-2-95-111, EDN: USBZSS

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Полный текст в формате PDF(Ru):
(загрузок: 28)
Язык публикации: 
русский
Тип статьи: 
Научная статья
УДК: 
541.136
EDN: 
USBZSS

Получение и электрохимические свойства электродного материала на основе легированных азотом углеродных нанотрубок для гибридных суперконденсаторов

Авторы: 
Ковшутин Алексей Сергеевич, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Паньшин Егор Викторович, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Бурашникова Марина Михайловна, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Аннотация: 

Апробирована методика получения легированных азотом углеродных нанотрубок. В качестве источника азота использовался полианилин, химически синтезированный на поверхности нанотрубок с последующей карбонизацией. Исследованы электрохимические характеристики электродов на основе полученного углеродного материала для гибридных суперконденсаторов с кислотным электролитом. Показано, что легирование азотом углеродных нанотрубок повышает емкостных характеристик электродов.

Список источников: 
  1. Goodenough J. B. Evolution of strategies for modern rechargeable batteries. Acc. Chem. Res., 2012, vol. 46, pp. 1053–1061. https://doi.org/10.1021/ar2002705
  2. Naoi K., Naoi W., Aoyagi S., Miyamoto J., Kamino T. New generation “Nanohybrid Supercapacitor”. Acc. Chem. Res., 2013, vol. 46, pp. 1075–1083. https://doi.org/10.1021/ar200308h 
  3. Kovalenko I., Zdyrko B., Magasinski A., Hertzberg B., Milicev Z., Burtovyy R., Luzinov I., Yushin G. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science, 2011, vol. 333, pp. 75–79. https://doi.org/10.1126/science.1209150
  4. Kotz R., Carlen M. Principles and applications of electrochemical capacitors. Electrochim. Acta, 2000, vol. 45, pp. 2483–2498. https://doi.org/10.1016/S0013-4686(00)00354-6
  5. Miller J. R., Burke A. F. Electrochemical capacitors: Challenges and opportunities for real-world applications. Electrochem. Soc. Interf., 2008, vol. 17, pp. 53–57.
  6. Huang X., Yu H., Chen J., Lu Z., Yazami R., Hng H. H. Ultrahigh rate capabilities of lithium-ion batteries from 3d ordered hierarchically porous electrodes with entrapped active nanoparticles conguration. Adv. Mater., 2014, vol. 26, pp. 1296–1303.
  7. Liu C., Li F., Ma L. P., Cheng H. M. Advanced materials for energy storage. Adv. Mater., 2010, vol. 22, pp. E28–E62. https://doi.org/10.1002/adma.200903328
  8. Chaudhuri R. G., Paria S. Core/Shell Nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev., 2012, vol. 112, pp. 2373–2433. https://doi.org/10.1021/cr100449n
  9. Zhu J., Yang D., Yin Z., Yan Q., Zhang H. Graphene and graphene-based materials for energy storage applications. Small, 2014, vol. 10, pp. 3480–3498. https://doi.org/10.1002/smll.201303202
  10. Zhang Y. B., Small J. P., Pontius W. V., Kim P. Fabrication and electric field dependent transport measurements of mesoscopic graphite devices. Appl. Phys. Lett., 2005, vol. 86, art. 073104. https://doi.org/10.1063/1.1862334
  11. Hernandez Y., Nicolosi V., Lotya M., Blighe F. M., Sun Z., De S., Mcgovern I. T., Holland B., Byrne M., Gun’ko Y. K., Boland J. J., Niraj P., Duesberg G., Krishnamurthy S., Goodhue R., Hutchison J., Scardaci V., Ferrari A. C., Coleman J. N. Highyield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol., 2008, vol. 3, pp. 563–568. https://doi.org/10.1038/nnano.2008.215
  12. Yu Q., Lian J., Siriponglert S., Li H., Chen Y. P., Pei S. S. Graphene segregated on ni surfaces and transferred to insulators. Appl.Phys. Lett., 2008, vol. 93, art. 113103. https://doi.org/10.1063/1.2982585
  13. Peng L., Xu Z., Liu Z., Wei Y., Sun H., Li Z., Zhao X., Gao C. An iron-basedgreen approach to 1-h production of single-layer graphene oxide. Nat. Commun., 2015, vol. 6, art. 5716. https://doi.org/10.1038/ncomms6716
  14. Becerril H. A., Mao J., Liu Z., Stoltenberg R. M., Bao Z., Chen Y. Valuation of solutionprocessed reduced graphene oxide films as transparent conductors. ACS Nano, 2008, vol. 2, pp. 463–470. https://doi.org/10.1021/nn700375n
  15. Presser V., Heon M., Gogotsi Y. Carbidederived carbons – from porous networks to nanotubes and graphene. Adv. Funct. Mater., 2011, vol. 21, pp. 810–833. https://doi.org/10.1002/adfm.201002094
  16. Zhang L. L., Zhao X. S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev., 2009, vol. 38, pp. 2520–2531. https://doi.org/10.1039/B813846J
  17. Lu W., Hartman R., Qu L., Dai L. Nanocomposite electrodes for high-performance. supercapacitors. J. Phys. Chem. Lett., 2011, vol. 2, pp. 655–660. https://doi.org/10.1021/jz200104n
  18. Hahm M. G. Leela Mohana Reddy A., Cole D. P., Rivera M., Vento J. A., Nam J., Jung H. Y., Kim Y. L., Narayanan N. T., Hashim D. P., Galande C., Jung Y. J., Bundy M., Karna S., Ajayan P. M., Vajtai R. Carbon nanotube-nanocup hybrid structures for high power supercapacitor applications. Nano Lett., 2012, vol. 12, pp. 5616–5621. https://doi.org/10.1021/nl3027372
  19. Li P., Kong C., Shang Y., Shi E., Yu Y., Qian W., Wei F., Wei J., Wang K., Zhu H., Cao A., Wu D. Highly deformation-tolerant carbon nanotube sponges as supercapacitor electrodes. Nanoscale, 2013, vol. 5, pp. 8472–8479. https://doi.org/10.1039/C3NR01932B
  20. Zheng Y., Li D., Ahmed Z., Park J., Zhou C., Yang C. Y. Carbon nanotube-on-graphene heterostructures. Journal of Electronic Materials, 2020, vol. 49, pp. 6806– 6816. https://doi.org/10.1007/s11664-020-08446-7
  21. You B., Wang L., Yao L., Yang J. Three dimensional n-doped graphene–CNT networks for supercapacitor. Chem. Commun., 2013, vol. 49, pp. 5016–5018. https://doi.org/10.1039/C3CC41949E
  22. Wang S., Dryfe R. A. W. Graphene oxideassisted deposition of carbon nanotubes on carbon cloth as advanced binder-free electrodes for flexible supercapacitors. J. Mater. Chem. A, 2013, vol. 1, pp. 5279–5283. https://doi.org/10.1039/C3TA10436B
  23. Jha N., Ramesh P., Bekyarova E., Itkis M. E., Haddon R. C. High energy density supercapacitor based on a hybrid carbon nanotube–reduced graphite oxide architecture. Adv. Energy Mater., 2012, vol. 2, pp. 438–444. https://doi.org/10.1002/aenm.201100697
  24. Du F., Yu D., Dai L., Ganguli S., Varshney V., Roy A. K. Preparation of tunable 3d pillared carbon nanotubegraphene networks for high-performance capacitance. Chem. Mater., 2011, vol. 23, pp. 4810–4816. https://doi.org/10.1021/cm2021214
  25. Chmiola J., Largeot C., Taberna P. L., Simon P., Gogotsi Y. Desolvation of ions in subnanometer pores and its effect on capacitance and double-layer theory. Angew. Chem. Int. Ed., 2008, vol. 47, pp. 3392–3395. https://doi.org/10.1002/anie.200704894
  26. Morozan A., Jaouen F. Metal organic frameworks for electrochemical applications. Energy Environ. Sci., 2012, vol. 5, pp. 9269–9290. https://doi.org/10.1039/C2EE22989G
  27. Betard A., Fischer R. A. Metal-organic framework thin films: From fundamentals to applications. Chem. Rev., 2012, vol. 112, pp. 1055–1083. https://doi.org/10.1021/cr200167v
  28. Chen Y. Z., Wang C., Wu Z. Y., Xiong Y., Xu Q., Yu S. H., Jiang H. L. From bimetallic metalorganic framework to porous carbon: High surface area and multicomponent active dopants for excellent electrocatalysis. Adv. Mater., 2015, vol. 27, pp. 5010–5016. https://doi.org/10.1002/adma.201502315
  29. Chen L. F., Zhang X. D., Liang H. W., Kong M., Guan Q. F., Chen P., Wu Z. Y., Yu S. H. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. Acs Nano, 2012, vol. 6, pp. 7092–7102. https://doi.org/10.1021/nn302147s
  30. You B., Yin P., An L. Multifunctional electroactive heteroatom-doped carbon aerogels. Small, 2014, vol. 10, pp. 4352–4361. https://doi.org/10.1002/smll.201401192
  31. Titirici M., White R. J. Brun N., Budarin V. L., Su D. S., Monte F., Clark J. H., Maclachlan M. J. Sustainable carbon materials. Chem. Soc. Rev., 2015, vol. 44, pp. 250–290. https://doi.org/10.1039/C4CS00232F
  32. Dreyer D. R., Park S., Bielawski C. W., Ruoff R. S. The chemistry of graphene oxide. Chem. Soc. Rev., 2010, vol. 39, pp. 228–240. https://doi.org/10.1039/B917103G
  33. Zhao J., Lai H., Lyu Z., Jiang Y., Xie K., Wang X., Wu Q., Yang L., In Z., Ma Y., Liu J., Hu Z. Hydrophilic hierarchical nitrogen-doped carbon nanocages for ultrahigh supercapacitive performance. Adv. Mater., 2015, vol. 27, pp. 3541–3545. https://doi.org/10.1002/adma.201500945
  34. Wang D. W., Li F., Chen Z. G., Lu G. Q., Cheng H. M. Synthesis and electrochemical property of boron-doped mesoporous carbon in supercapacitor. Chem. Mater., 2008, vol. 20, pp. 7195–7200.
  35. Martins Miwa T. B., da Silva R. H., Fazzio A. J. R. Electronic and transport properties of boron-doped graphene nanoribbons. Phys. Rev. Lett., 2007, vol. 98, art. 196803. https://doi.org/10.1103/PhysRevLett.98.196803
  36. Han J., Zhang L. L., Lee S., Oh J., Lee K. S., Potts J. R., Ji J., Zhao X., Ruoffand R. S., Park S. Generation of b-doped graphene nanoplatelets using a solution process and their supercapacitor applications. Acs Nano, 2013, vol. 7, pp. 19–26. https://doi.org/10.1021/nn3034309
  37. Chen L., Huang Z., Liang H., Gao H., Yu S. Three-Dimensional Heteroatom-Doped Carbon Nanofiber Networks Derived from Bacterial Cellulose for Supercapacitors Adv. Funct. Mater., 2014, vol. 24, pp. 5104–5111. https://doi.org/10.1002/adfm.201400590
  38. Li B., Dai F., Xiao Q., Yang L., Shen J., Zhang C., Cai M. Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy Environ. Sci., 2015, vol. 9, pp. 102–106.
  39. Deng Y., Xie Y., Zou K., Ji X. Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors. J. Mater. Chem. A, 2016, vol. 4, pp. 1144–1173. https://doi.org/10.1039/C5TA08620E
  40. Cao B., Zhang B., Jiang X., Zhang Y., Pan C. Direct synthesis of high concentration n-doped coiled carbon nanofibers from amine flames and its electrochemical properties. J. Power Sources, 2011, vol. 196, pp. 7868– 7873. https://doi.org/10.1016/j.jpowsour.2011.05.016
  41. Qiu Y., Zhang X., Yang S. High performance supercapacitors based on highlyconductive nitrogen-doped graphene sheets. Phys. Chem. Chem. Phys., 2011, vol. 13, pp. 12554–12558. https://doi.org/10.1039/C1CP21148J
  42. Chen P., Yang J. J., Li S. S., Wang Z., Xiao T. Y., Qian Y. H., Yu S. H. Hydrothermal synthesis of macroscopic nitrogen-d oped graphene hydrogels for ultrafast supercapacitor. Nano Energy, 2013, vol. 2, pp. 249–256.
  43. Wen Z., Wang X., Mao S., Bo Z., Kim H., Cui S., Lu G., Feng X., Chen J. Crumpled nitrogen-doped graphene nanosheets with ultrahigh pore volume for highperformance supercapacitor. Adv. Mater., 2012, vol. 24, pp. 5610–5616. https://doi.org/10.1002/adma.201201920
  44. Jeong H. M., Lee J. W., Shin W. H., Choi Y. J., Shin H. J., Kang J. K., Choi J. W. Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett., 2011, vol. 11, pp. 2472–2477. https://doi.org/10.1021/nl2009058
  45. Wei J., Zhou D., Sun Z., Deng Y., Xia Y., Zhao D. A controllable synthesis of rich nitrogen-doped ordered mesoporous carbon for CO2 capture and supercapacitors. Adv. Funct. Mater., 2013, vol. 23, pp. 2322– 2328. https://doi.org/10.1002/adfm.201202764
  46. Lin T., Chen I. W., Liu F., Yang C., Bi H., Xu F., Huang F. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science, 2015, vol. 350, pp. 1508–1513. https://doi.org/10.1126/science.aab3798
  47. Zhang S., Tsuzuki S., Ueno K., Dokko K., Watanabe M. Upper limit of nitrogen content in carbon materials. Angew. Chem. Int. Ed., 2015, vol. 54, pp. 1302– 1306. https://doi.org/10.1002/anie.201410234
  48. Long C., Qi D., Wei T., Yan J., Jiang L., Fan Z. Nitrogen-doped carbon networks for high energy density supercapacitors derived from polyaniline coated bacterial cellulose. Adv. Funct. Mater., 2014, vol. 24, pp. 3953– 3961. https://doi.org/10.1002/adfm.201304269
  49. Hao L., Luo B., Li X., Jin M., Fang Y., Tang Z., Jia Y., Liang M., Thomas A., Yang J., Zhi L. Terephthalonitrile-derived nitrogen-rich networks for high performance supercapacitors. Energy Environ. Sci., 2012, vol. 5, pp. 9747–9751. https://doi.org/10.1039/C2EE22814A
  50. Guo D., Mi J., Hao G., Dong W., Xiong G., Li W., Lu A. Ionic liquid C16mimBF4 assisted synthesis of poly(benzoxazine-co-resol)-based hierarchically porous carbons with superior performance in supercapacitors. Energy.Environ. Sci., 2013, vol. 6, pp. 652–659. https://doi.org/10.1039/C2EE23127A
  51. Jin Z. Y., Lu A. H., Xu Y. Y., Zhang J. T., Li W. C. Ionic liquid-assisted synthesis of microporous carbon nanosheets for use in high rate and long cycle life supercapacitors. Adv. Mater., 2014, vol. 26, pp. 3700– 3705. https://doi.org/10.1002/adma.201306273 
  52. Zhu H., Yin J., Wang X., Wang H., Yang X. Microorganism-derived heteroatom-doped carbon materials for oxygen reduction and supercapacitors. Adv. Funct. Mater., 2013, vol. 23, pp. 1305–1312. https://doi.org/10.1002/adfm.201201643
  53. Li Z., Xu Z., Tan X., Wang H., Holt C. M. B., Stephenson T., Olsen B. C., Mitlin D. Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors. Energy Environ. Sci., 2013, vol. 6, pp. 871–878. https://doi.org/10.1039/C2EE23599D
  54. Chen X., Chen X., Xu X., Yang Z., Liu Z., Zhang L., Xu X., Chenand Y., Huang S. Sulfur-doped porous reduced graphene oxide hollow nanosphere frameworks as metal-free electrocatalysts for oxygen reduction reaction and as supercapacitor electrode materials. Nanoscale, 2014, vol. 6, pp. 13740–13747. https://doi.org/10.1039/C4NR04783D
  55. Parveen N., Ansari M. O., Ansaria S. A., Cho M. H. Simultaneous sulfur doping and exfoliation of graphene from graphite using an electrochemical method for supercapacitor electrode materials. J. Mater. Chem. A, 2016, vol. 4, pp. 233–240. https://doi.org/10.1039/C5TA07963B
  56. Lai L., Yang H., Wang L., Teh B. K., Zhong J., Chou H., Chen L., Chen W., Shen Z., Ruoff R. S., Lin J. Preparation of supercapacitor electrodes through selection of graphene surface functionalities. ACS Nano, 2012, vol. 6, pp. 5941–5951. https://doi.org/10.1021/nn3008096
  57. Assresahegn B. D., Belanger D. Multifunctional carbon for electrochemical double-layer capacitors. Adv. Funct. Mater., 2015, vol. 25, pp. 6775–6785. https://doi.org/10.1002/adfm.201503738
  58. Shen J., Liu A., Tu Y., Foo G., Yeo C., ChanPark M. B., Jiang R., Chen Y. How carboxylic groups improve the performance of single-walled carbon nanotube electrochemical capacitors? Energy Environ. Sci., 2011, vol. 4, pp. 4220–4229. https://doi.org/10.1039/C1EE01479J
  59. Tian W., Gao Q., Tan Y., Zhang Y., Xu J., Li Z., Yang K., Zhu L., Liu Z. Three-dimensional functionalized graphenes with systematical control over the interconnected pores and surface functional groups for high energy performance supercapacitors. Carbon, 2015, vol. 85, pp. 351–362. https://doi.org/10.1016/j.carbon.2015.01.001 
Поступила в редакцию: 
19.05.2025
Принята к публикации: 
09.06.2025
Опубликована: 
30.06.2025