ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


Для цитирования:

Макаров А. А., Третьяченко Е. В., Викулова М. А., Байняшев А. М., Рзаев В. А., Гороховский А. В., Гоффман В. Г. ИМПЕДАНСНАЯ СПЕКТРОСКОПИЯ ГОЛЛАНДИТОПОДОБНОГО КЕРАМИЧЕСКОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА СИСТЕМЫ K2O-MnO-Cr2O3-TiO2 // Электрохимическая энергетика. 2025. Т. 25, вып. 1. С. 33-44. DOI: 10.18500/1608-4039-2025-25-1-33-44, EDN: XCZYJY

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Полный текст в формате PDF(Ru):
(загрузок: 51)
Язык публикации: 
русский
Тип статьи: 
Научная статья
УДК: 
546.56
EDN: 
XCZYJY

ИМПЕДАНСНАЯ СПЕКТРОСКОПИЯ ГОЛЛАНДИТОПОДОБНОГО КЕРАМИЧЕСКОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА СИСТЕМЫ K2O-MnO-Cr2O3-TiO2

Авторы: 
Макаров Алексей Алексеевич, Саратовский государственный технический университет им. Гагарина Ю. А.
Третьяченко Елена Васильевна, Саратовский государственный технический университет им. Гагарина Ю. А.
Викулова Мария Александровна, Саратовский государственный технический университет им. Гагарина Ю. А.
Байняшев Алексей Михайлович, Саратовский государственный технический университет им. Гагарина Ю. А.
Рзаев Валерий Али Рза оглы, Саратовский государственный технический университет им. Гагарина Ю. А.
Гороховский Александр Владиленович, Саратовский государственный технический университет им. Гагарина Ю. А.
Гоффман Владимир Георгиевич, Саратовский государственный технический университет им. Гагарина Ю. А.
Аннотация: 

Методом импедансной спектроскопии исследованы электрохимические свойства керамического композита, в котором в качестве основной фазы присутствует голландитоподобный твёрдый раствор титаната калия-хрома. Изучены зависимости проводимости полученных композитов от температуры в диапазоне от 250 до 800°С. Определены энергии активации объёмной, межзёренной проводимости и проводимости по объёмам зёрен. Также установлен фазовый состав композита и кристаллографические структуры отдельных фаз.

Список источников: 
  1. Spearing S. M. Materials issues in microelectromechanical systems (MEMS). Acta Materialia, 2000, vol. 48, no. 1, pp. 179–196. https://doi.org/10.1016/S1359-6454(99)00294-3
  2. Hao S., Dongsheng Fu, Jialong Li, Songlin Mu, Yunjiao Li, Qingyan Shang. Preparation and dielectric properties of Ce-doped Ba(ZrxTi1–x)O3 ceramics. Research on Chemical Intermediates, 2015, vol. 41, pp. 3109–3116. https://doi.org/10.1007/s11164-013-1418-3
  3. Kit-Ying Chan, Baohua Jia, Han Lin, Nishar Hameed, Joong-Hee Lee, Kin-Tak Lau. A critical review on multifunctional composites as structural capacitors for energy storage. Composite Structures, 2018, vol. 188, pp. 126–142. https://doi.org/10.1016/j.compstruct.2017.12.072
  4. Gorokhovsky A. V., Tretyachenko E. V., Escalante-Garcia J. I., Yurkov G. Yu., Goffman V. G. Modified amorphous layered titanates as precursor materials to produce heterostructured nanopowders and ceramic nanocomposites. Journal of Alloys and Compounds, 2014, vol. 586, pp. S494–S497. https://doi.org/10.1016/j.jallcom.2012.10.054
  5. Tretyachenko E. V., Gorokhovsky A. V., Yurkov G. Y., Fedorov F. S., Vikulova M. A., Kovaleva D. S., Orozaliev E. E. Adsorption and photo-catalytic properties of layered lepidocrocite-like quasi-amorphous compounds based on modified potassium polytitanates. Particuology, 2014, vol. 17, pp. 22–28. https://doi.org/10.1016/j.partic.2013.12.002
  6. Gorokhovsky A., Saunina S., Maximova L., Tretyachenko E., Goffman V., Escalante-Garcia J. I., Vikulova M. Synthesis and electrical properties of the high-k ceramic composites based on potassium polytitanate modified by manganese. Research on Chemical Intermediates, 2022, vol. 48, no. 3, pp. 1227–1248. https://doi.org/10.1007/s11164-022-04669-x
  7. Gorokhovskii A. V., Tret’yachenko E. V., Kovaleva D. S., Vikulova M. A.. Synthesis and electrophysical properties of ceramic nanocomposites based on potassium polytitanate modified by chromium compounds. Glass and Ceramics, 2016, vol. 73, pp. 206–209. https://doi.org/10.1007/s10717-016-9857-0
  8. Makarov A. A., Tretyachenko E. V., Vikulova M. A., Saunina S. I. Study of the influence of sintering conditions of hollandite ceramics on its electrophysical properties. Khimicheskie problemy sovremennosti 2023: sbornik materialov VII Mezhdunarodnoi nauchnoi konferentsii studentov, aspirantov i molodykh uchenykh (Donetsk, 16–18 maya 2023 g.); otv. red. A. V. Belyi [Beliy A. V., ed. Chemical Problems of our Time 2023: Collection of Proc. from the VII International scientific conference of students, postgraduates and young scientists (Donetsk, May 16–18, 2023). Donetsk, Donetsk National University Publ., 2023, pp. 113–116. (in Russian).
  9. Gorokhovsky A. V., Escalante-Garc´ıa J. I., Sánchez-Monjarás T., Gutiérrez-Chavarr´ıa C. A. Synthesis of potassium polytitanate precursors by treatment of TiO2 with molten mixtures of KNO3 and KOH. Journal of the European Ceramic Society, 2004, no. 13, pp. 3541–3546. https://doi.org/10.1016/J.JEURCERAMSOC.2003.12.006
  10. Makarov A. A., Tretyachenko E. V., Vikulova M. A., Saunina S. I. Synthesis and properties of hollandites of the K2O-MNO-Cr2O3-TiO2 system based on potassium polytitanates. In: Perspektivnye materialy i vysokoeffektivnye protsessy obrabotki: sbornik materialov Vseros. molodezhnoy konf. (Saratov, 18–19 maya 2022 g.); pod. obshch. red. A. A. Fomina [Fomin A. A., total ed. Advanced Materials and Highly Efficient Processing Processes: Collection of Proc. of the All-Russian youth conf. (Saratov, May 18–19, 2022). Saratov, Saratov State Technical University Publ., 2022, pp. 140–142 (in Russian).
  11. Pouya Moetakef, Amber M. Larson, Brenna C. Hodges, Peter Zavalij, Karen J. Gaskell, Philip M. Piccoli, Efrain E. Rodriguez. Synthesis and crystal chemistry of microporous titanates Kx(Ti, M)8O16 where M = Sc–Ni. Journal of Solid State Chemistry, 2014, vol. 220, pp. 45– 53. https://doi.org/10.1016/j.jssc.2014.08.012
  12. Lucchesi S., Russo U., Della Giusta A. Crystal chemistry and cation distribution in some Mn-rich natural and synthetic spinels. European Journal of Mineralogy, 1997, vol. 9, no. 1, pp. 31–42. https://doi.org/10.1127/ejm/9/1/0031
  13. Khitrova V. I., Bundule M. F., Pinsker Z. G. Electron-diffraction study of titanium-dioxide in thin-films. Kristallography, 1977, vol. 22, no. 6, pp. 1253–1258. https://doi.org/10.1107/S0108767305086277
  14. Ruhemann F. Temperaturabhängigkeit der Gitterkonstanten von Manganoxyd. Physik. Ber., 1935, Bd. 16, S. 2337.
  15. Goffman V. G., Makarova A. D., Maksimova L. A., Gorokhovsky A. V., Tretyachenko E. V., Gorshkov N. V., Vikulova M. A., Baynyashev A. M. Tverdyy proton-provodyashchiy keramicheskiy elektrolit dlya nakopiteley energii (Solid proton-conducting ceramic electrolyte for energy storage devices). Electrochemical Energetics, 2021, vol. 21, no. 4, pp. 197–205 (in Russian). https://doi.org/10.18500/1608-4039-2021-21-4-197-205
  16. Ukshe E. A., Bukun N. G. Tverdyye elektrolity [Solid electrolytes]. Moscow, Nauka, 1977. 176 p. (in Russian).
  17. Lucía dos Santos-Gómez L., Javier Zamudio García, Jose Manuel Porras-Vazquez, Enrique R. Losilla, Marrero-López D. Nanostructured BaCo0.4Fe0.4Zr0.1Y0.1O3-δ cathodes with different microstructural architectures. Nanomaterials, 2020, vol. 10, no. 6, article no. 1055. https://doi.org/10.3390/nano10061055
  18. Grafov B. M., Ushke E. A. Elektrokhimicheskiye tsepi peremennogo toka: monografiya [Electrochemical circuits of alternating current: Monograph]. Moscow, Nauka, 1973. 128 p. (in Russian).
  19. Mark E. Orazem, Isabelle Frateur, Bernard Tribollet, Vincent Vivier, Sabrina Marcelin, Nadine Pébère, Annette L. Bunge, Erick A. White, Douglas P. Riemer, Marco Musiani. Dielectric properties of materials showing constant-phase-element (CPE) impedance response. Journal of The Electrochemical Society, 2013, vol. 160, no. 6, article no. C215. https://doi.org/10.1149/2.033306jes
  20. Shukdev Pandey, Devendra Kumar, Devendra Kumar, Lakshman Pandey, Equivalent circuit models using CPE for impedance spectroscopy of electronic ceramics. Integrated Ferroelectrics, 2017, vol. 183, no. 1, pp. 141–162. https://doi.org/10.1080/10584587.2017.1376984
  21. Ram M. Electrical analysis of a ceramic: LiCo3/5Mn1/5Cu1/5VO4. Physica B: Condensed Matter, 2010, vol. 405, no. 1, pp. 4201–4204. https://doi.org/10.1016/j.physb.2010.07.011 
Поступила в редакцию: 
10.01.2025
Принята к публикации: 
20.01.2025
Опубликована: 
28.02.2025