Для цитирования:
Гасюк И. М., Кайкан Л. С., Угорчук В. В., Грабко Т. В. Электрофизические свойства нестехиометрических литий-железных шпинелей, замещенных ионами магния // Электрохимическая энергетика. 2008. Т. 8, вып. 1. С. 58-63. DOI: 10.18500/1608-4039-2008-8-1-58-63, EDN: JVPANL
Электрофизические свойства нестехиометрических литий-железных шпинелей, замещенных ионами магния
Образцы нестехиометрического состава Li0.5 Fe2.5 - x Mgx O4 (0 ? x ? 1) изготовлены по стандартной керамической технологии. Действительная и мнимая части диэлектрической проницаемости ?', ?'' а также проводимость на переменном токе ? (?) определялись для частотного диапазона от 10 - 2 до 105 Гц при комнатной температуре и различных скоростях охлаждения, рассчитывался тангенс диэлектрических потерь tg ?. Образец с x=0.1, который охлаждался быстро, показал наибольшее значение ?0 по сравнению с другими образцами. Влияние концентрации Mg2 + обсуждалось на основе модели Купса.
1. Малышев А. В., Пешев В. В., Притулов А. М. // Изв. вузов. Физика. 2003. № 7. C. 48–53.
2. El Kony D. // Egypt. J. Solids, 2004. V. 27, № 2. P. 285–297.
3. Koops C. G. // Phys.Rev. 1951. V. 33, № 1. P. 121–124.
4. Гасюк І.М., Будзуляк І.М, Галігузова С. А., Угорчук В. В., Кайкан Л. С. // Наносистеми, наноматеріали, нанотехнології. 2006. Т. 4, вип. 3. C. 613–622.
5. Остафійчук Б. Л., Гасюк І.М., Кайкан Л. С., Депутат Б. Я., Морушко О. В. // Фізика і хімія твердого тіла. 2006. Т. 7, № 2. C. 202–206.
6. Гасюк І.М., Кайкан Л. С., Грабко Т. В. // Фізика і хімія твердого тіла, 2007. Т. 8, № 1. C. 28–34.
7. Samy A. // Egypt. J. Solids. 2006. V. 29, № 1. P. 131–140.
8. Журавлев Г. И. Химия и технология ферритов. Л.: Химия, 1970. 192 с.
9. Abdullah M. N., Yusoff A. N. // J. of Alloys and Compounds. 1996. Vol. 233(1). P. 129–135.
10. Ahmed M. A., Samiha T. Bishay // J. of Physics D: Applied Physics. 2001. Vol. 34. P. 1339–1345.