ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Podgornova O. A., Fedorov N. A., Uvarov N. F. Polyurethane elastomer-based solid polymer electrolytes for solid-state supercapacitors. Electrochemical Energetics, 2025, vol. 25, iss. 4, pp. 200-204. DOI: 10.18500/1608-4039-2025-25-4-200-204, EDN: LXQYVE

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 21)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
541.135.4
EDN: 
LXQYVE

Polyurethane elastomer-based solid polymer electrolytes for solid-state supercapacitors

Autors: 
Podgornova Olga A., Institute of Chemistry of a Solid body and Mechanochemistry of the Siberian Branch of RAS
Fedorov Nikita Alexandrovich, Institute of Chemistry of a Solid body and Mechanochemistry of the Siberian Branch of RAS
Uvarov Nikolai F., Institute of Chemistry of a Solid body and Mechanochemistry of the Siberian Branch of RAS
Abstract: 

Solid polymer electrolytes are one of the promising materials for solid-state supercapacitors. In this work, the solid polymer electrolytes PU-PFL100 were obtained based on polyurethane elastomer filled with LiBF4 solution in N-methyl-2-pyrrolidone. Using cyclic voltammetry and galvanostatic charge/discharge methods, it was shown that Ti3C2/AC//PU-PFL100//Ti3C2/AC symmetrical supercapacitor cells, in which the composite based on Ti3C2 with activated carbon is used as electrodes, and PU-PFL100 is used as electrolyte and separator, exhibit specific capacitance of 34.5 F/g at a scan rate of 5 mV/s at the room temperature.

Acknowledgments: 
The research was carried out with the financial support of the state assignment to ISSCM SB RAS, project No. 121032500065-5.
Reference: 
  1. Yaseen M., Khattak M. A. K., Humayun M., Usman M., Shah S. S., Bibi S., Hasnain B. S. U., Ahmad S. M., Khan A., Shah N., Tahir A. A., Ullah H. A Review of Supercapacitors: Materials Design, Modification, and Applications. Energies, 2021, vol. 14, art. 7779. https://doi.org/10.3390/en14227779
  2. Jalal N. I., Ibrahim R. I., Oudah M. K. A review on Supercapacitors: Types and components. J. Phys.: Conf. Ser., 2021, vol. 1973, art. 012015. https://doi.org/10.1088/1742-6596/1973/1/012015
  3. Chen X., Holze R. Polymer Electrolytes for Supercapacitors. Polymers, 2024, vol. 16, art. 3164. https://doi.org/10.3390/polym16223164
  4. Tadesse M. G., Ahmmed A. S., Lübben J. F. Review on Conductive Polymer Composites for Supercapacitor Applications. J. Composites Science, 2024, vol. 8, art. 53. https://doi.org/10.3390/jcs8020053
  5. Ren N., Song Y., Tao C., Cong B., Cheng Q., Huang Y., Xu G., Bao J. Effect of the soft and hard segment composition on the properties of waterborne polyurethane-based solid polymer electrolyte for lithium ion batteries. J. Solid State Electrochem., 2018, vol. 22, pp. 1109–1121. https://doi.org/10.1007/s10008-017-3855-1
  6. Fedorov N., Ulihin A., Uvarov N. Synthesis and properties of polymer electrolytes based on polyurethane elastomer and lithium salts. Chimica Techno Acta, 2023, vol. 10, art. 202310311. https://doi.org/10.15826/chimtech.2023.10.3.11
  7. Mustapa S. R., Aung M. M., Ahmad A., Mansor A., TianKhoon L. Preparation and characterization of Jatropha oil-based Polyurethane as nonaqueous solid polymer electrolyte for electrochemical devices. Electrochim. Acta, 2016, vol. 222, pp. 293– 302. https://doi.org/10.1016/j.electacta.2016.10.173
  8. Zhao D., Lei D., Wang P., Li S., Zhang H., Cui X. Synthesis, Water-Removing Method and Influences of Trace Water for LiBF4. ChemistrySelect, 2019, vol. 4, pp. 5853–5859. https://doi.org/10.1002/slct.20190004
  9. Lin Z., Rozier P., Duployer B., Taberna P.- L., Anasori B., Gogotsi Y., Simon P. Electrochemical and in-situ X-ray diffraction studies of Ti3C2Tx MXene in ionic liquid electrolyte. Electrochem. Commun., 2016, vol. 72, pp. 50–53. https://doi.org/10.1016/j.elecom.2016.08.023
  10. Chodankar N. R., Pham H. D., Nanjundan A. K., Fernando J. F. S., Jayaramulu K., Golberg D., Han Y.-K., Dubal D. P. True meaning of pseudocapacitors and their performance metrics: Asymmetric versus hybrid supercapacitors. Small, 2020, vol. 16, art. 2002806. https://doi.org/10.1002/smll.202002806
Received: 
15.10.2025
Accepted: 
17.11.2025
Published: 
25.12.2025