For citation:
Podgornova O. A., Fedorov N. A., Uvarov N. F. Polyurethane elastomer-based solid polymer electrolytes for solid-state supercapacitors. Electrochemical Energetics, 2025, vol. 25, iss. 4, pp. 200-204. DOI: 10.18500/1608-4039-2025-25-4-200-204, EDN: LXQYVE
Polyurethane elastomer-based solid polymer electrolytes for solid-state supercapacitors
Solid polymer electrolytes are one of the promising materials for solid-state supercapacitors. In this work, the solid polymer electrolytes PU-PFL100 were obtained based on polyurethane elastomer filled with LiBF4 solution in N-methyl-2-pyrrolidone. Using cyclic voltammetry and galvanostatic charge/discharge methods, it was shown that Ti3C2/AC//PU-PFL100//Ti3C2/AC symmetrical supercapacitor cells, in which the composite based on Ti3C2 with activated carbon is used as electrodes, and PU-PFL100 is used as electrolyte and separator, exhibit specific capacitance of 34.5 F/g at a scan rate of 5 mV/s at the room temperature.
- Yaseen M., Khattak M. A. K., Humayun M., Usman M., Shah S. S., Bibi S., Hasnain B. S. U., Ahmad S. M., Khan A., Shah N., Tahir A. A., Ullah H. A Review of Supercapacitors: Materials Design, Modification, and Applications. Energies, 2021, vol. 14, art. 7779. https://doi.org/10.3390/en14227779
- Jalal N. I., Ibrahim R. I., Oudah M. K. A review on Supercapacitors: Types and components. J. Phys.: Conf. Ser., 2021, vol. 1973, art. 012015. https://doi.org/10.1088/1742-6596/1973/1/012015
- Chen X., Holze R. Polymer Electrolytes for Supercapacitors. Polymers, 2024, vol. 16, art. 3164. https://doi.org/10.3390/polym16223164
- Tadesse M. G., Ahmmed A. S., Lübben J. F. Review on Conductive Polymer Composites for Supercapacitor Applications. J. Composites Science, 2024, vol. 8, art. 53. https://doi.org/10.3390/jcs8020053
- Ren N., Song Y., Tao C., Cong B., Cheng Q., Huang Y., Xu G., Bao J. Effect of the soft and hard segment composition on the properties of waterborne polyurethane-based solid polymer electrolyte for lithium ion batteries. J. Solid State Electrochem., 2018, vol. 22, pp. 1109–1121. https://doi.org/10.1007/s10008-017-3855-1
- Fedorov N., Ulihin A., Uvarov N. Synthesis and properties of polymer electrolytes based on polyurethane elastomer and lithium salts. Chimica Techno Acta, 2023, vol. 10, art. 202310311. https://doi.org/10.15826/chimtech.2023.10.3.11
- Mustapa S. R., Aung M. M., Ahmad A., Mansor A., TianKhoon L. Preparation and characterization of Jatropha oil-based Polyurethane as nonaqueous solid polymer electrolyte for electrochemical devices. Electrochim. Acta, 2016, vol. 222, pp. 293– 302. https://doi.org/10.1016/j.electacta.2016.10.173
- Zhao D., Lei D., Wang P., Li S., Zhang H., Cui X. Synthesis, Water-Removing Method and Influences of Trace Water for LiBF4. ChemistrySelect, 2019, vol. 4, pp. 5853–5859. https://doi.org/10.1002/slct.20190004
- Lin Z., Rozier P., Duployer B., Taberna P.- L., Anasori B., Gogotsi Y., Simon P. Electrochemical and in-situ X-ray diffraction studies of Ti3C2Tx MXene in ionic liquid electrolyte. Electrochem. Commun., 2016, vol. 72, pp. 50–53. https://doi.org/10.1016/j.elecom.2016.08.023
- Chodankar N. R., Pham H. D., Nanjundan A. K., Fernando J. F. S., Jayaramulu K., Golberg D., Han Y.-K., Dubal D. P. True meaning of pseudocapacitors and their performance metrics: Asymmetric versus hybrid supercapacitors. Small, 2020, vol. 16, art. 2002806. https://doi.org/10.1002/smll.202002806