ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Chernyavina V. V., Dyshlovaya Y. A., Berezhnaya A. G. Influence of composition of cathodic deposition electrolyte on morphology and capacity properties of MnO2 film. Electrochemical Energetics, 2025, vol. 25, iss. 2, pp. 74-86. DOI: 10.18500/1608-4039-2025-25-2-74-86, EDN: TGGVBC

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 249)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
541.136:544.636
EDN: 
TGGVBC

Influence of composition of cathodic deposition electrolyte on morphology and capacity properties of MnO2 film

Autors: 
Chernyavina Valentina Vladimirovna, Southern Federal University
Dyshlovaya Yaroslava Aleksandrovna, Southern Federal University
Berezhnaya Aleksandra Grigor'evna, Southern Federal University
Abstract: 

Manganese oxide was obtained by cathodic electrochemical deposition from the electrolyte solutions adding sodium nitrate or sulfate. The structural characteristics and the elemental composition of the MnO2 samples were studied by energy dispersive microanalysis, IR spectroscopy, and transmission electron microscopy. The electrochemical characteristics of the electrodes were determined by cyclic voltammetry, galvanostatic charge-discharge and impedance spectroscopy in 0.5M Na2SO4 solution. The dependence of the structural and capacitive properties of the MnO2 electrodes on the anion nature in the electrolyte for electrochemical deposition was determined. High capacitance characteristics were obtained for the MnO2 sample deposited from the electrolyte adding sodium sulfate. Its specific capacity was 215 F/g at the scanning speed of 5 mV/s.

Acknowledgments: 
The authors thank the centers for collective use of scientific equipment “Center for Research of Mineral Resources and the State of the Environment” and “Modern Microscopy” of the Southern Federal University for conducting studies of the structure and elemental composition of the samples.
Reference: 
  1. Conway B. E. Electrochemical Supercapacitors Scientific Fundamentals and Technological Applications. New York, Kluwer Academic/Plenum Press, 1999. 698 р.
  2. Wang G., Fu L., Zhao N., Yang L., Wu Y., Wu H. An Aqueous Rechargeable Lithium Battery with Good Cycling Performance. Angewandte Chemie International Edition, 2007, vol. 46, pp. 295–297. https://doi.org/10.1002/anie.200603699
  3. Tran C. C. H., Santos-Peña J., Damas C. Electrodeposited manganese oxide supercapacitor microelectrodes with enhanced performance in neutral aqueous electrolyte. Electrochimica Acta, 2019, vol. 335. art. 135564. https://doi.org/10.1016/j.electacta.2019.135564
  4. Toupin M., Brousse T., Bélanger D. Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor. Chemistry of Materials, 2004, vol. 16, pp. 3184–3190. https://doi.org/10.1021/cm049649j
  5. Wei W., Cui X., Chen W., Ivey D. G. Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev., 2011, vol. 40, no. 3, pp. 1697–1721. https://doi.org/10.1039/C0CS00127A
  6. Wang G., Zhang L., Zhang J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev., 2012, vol. 41, no. 2, pp. 797–828. https://doi.org/10.1039/C1CS15060J
  7. Beidaghi M., Gogotsi Y. Capacitive energy storage in micro-scale devices: Recent advances in design and fabrication of micro-supercapacitors. Energy Environmental Science, 2014, vol. 7, no. 3, pp. 867–884. https://doi.org/10.1039/C3EE43526A
  8. Zhang H., Cao G., Wang Z., Yang Y., Shi Z., Gu Z. Growth of Manganese Oxide Nanoflowers on Vertically-Aligned Carbon Nanotube Arrays for High-Rate Electrochemical Capacitive Energy Storage. Nano Letters, 2008, vol. 8, no. 9, pp. 2664–2668. https://doi.org/10.1021/nl800925j
  9. Therese G. H. A., Kamath P. V. Electrochemical Synthesis of Metal Oxides and Hydroxides. Chemistry of Materials, 2000, vol. 12, no. 5, pp. 1195–1204. https://doi.org/10.1021/cm990447a
  10. Babakhani B., Ivey D. G. Anodic deposition of manganese oxide electrodes with rod-like structures for application as electrochemical capacitors. J. Power Sources, vol. 195, no. 7, pp. 2110–2117. https://doi.org/10.1016/j.jpowsour.2009.10.045
  11. Chou S., Cheng F., Chen J. Electrodeposition synthesis and electrochemical properties of nanostructured γ-MnO2 films. J. Power Sources, 2006, vol. 162, iss. 1, pp. 727–734. https://doi.org/10.1016/j.jpowsour.2006.06.033
  12. Hu C.-C., Tsou T.-W. Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition. Electrochem. Commun., 2002, vol. 4, pp. 105–109. https://doi.org/10.1016/S1388-2481(01)00285-5
  13. Yousefi T., Golikand A. N., Hossein Mashhadizadeh M., Aghazadeh M. Facile synthesis of αMnO2 one-dimensional (1D) nanostructure and energy storage ability studies. Journal of Solid State Chemistry, 2012, vol. 190, pp. 202–207. https://doi.org/10.1016/j.jssc.2012.01.062
  14. Dubal D. P., Dhawale D. S., Gujar T. P., Lokhande C. D. Effect of different modes of electrodeposition on supercapacitive properties of MnO2 thin films. Applied Surface Science, 2011, vol. 257, no. 8, pp. 3378– 3382. https://doi.org/10.1016/j.apsusc.2010.11.028
  15. Therese G. H. A., Kamath P. V. Electrochemical Synthesis of Metal Oxides and Hydroxides. Chemistry of Materials, 2000, vol. 12, no. 5, pp. 1195–1204. https://doi.org/10.1021/cm990447a
  16. Lei Y., Daffos B., Taberna P. L., Simon P., Favier F. MnO2-coated Ni nanorods: Enhanced high rate behavior in pseudo-capacitive supercapacitor. Electrochimica Acta, 2010, vol. 55, iss. 25, pp. 7454–7459. https://doi.org/10.1016/j.electacta.2010.03.012
  17. Brousse T., Toupin M., Dugas R., Athouël L., Crosnier O., Bélanger D. Crystalline MnO2 as Possible Alternatives to Amorphous Compounds in Electrochemical Supercapacitors. Journal of the Electrochemical Society, 2006, vol. 153, no. 1, pp. A2171–A2180. https://doi.org/10.1149/1.2352197
  18. Coustan L., Lannelongue P., Arcidiacono P., Favier F. Faradaic contributions in the supercapacitive charge storage mechanisms of manganese dioxides. Electrochimica Acta, 2016, vol. 206, pp. 479–489. https://doi.org/10.1016/j.electacta.2016.01.212
  19. Radhiyah A. A., Izan Izwan M., Baiju V., Kwok Feng C., Jamil I., Jose R. Doubling of electrochemical parameters via the pre-intercalation of Na+ in layered MnO2 nanoflakes compared to α-MnO2 nanorods. RSC Advances, 2015, vol. 5, no. 13, pp. 9667–9673. https://doi.org/10.1039/c4ra15536j
  20. Chen P.-Y., Adomkevicius A., Lu Y.-T., Lin S.-C., Tu Y.-H., Hu C.-C. The Ultrahigh-Rate Performance of Alkali Ion-Pre-Intercalated Manganese Oxides in Aqueous Li2SO4, Na2SO4, K2SO4 and MgSO4 Electrolytes. Journal of the Electrochemical Society, 2019, vol. 166, no. 10, pp. A1875–A1883. https://doi.org/10.1149/2.0631910jes
  21. Aghazadeh M., Hosseinifard M., Sabour B., Dalvand S. Pulse electrochemical synthesis of capsulelike nanostructures of Co3O4 and investigation of their capacitive performance. Applied Surface Science, 2013, vol. 287, pp. 187–194. https://doi.org/10.1016/j.apsusc.2013.09.114
  22. Li G.-R., Feng Z.-P., Ou Y.-N., Wu D., Fu R., Tong Y.-X. Mesoporous MnO2/Carbon Aerogel Composites as Promising Electrode Materials for HighPerformance Supercapacitors. Langmuir, 2010, vol. 26, no. 4, pp. 2209–2213. https://doi.org/10.1021/la903947c
  23. Devaraj S., Munichandraiah N. The Effect of Nonionic Surfactant Triton X-100 During Electrochemical Deposition of MnO2 on Its Capacitance Properties. J. Electrochem. Soc., 2007, vol. 154, no. 1, pp. 901–909. https://doi.org/10.1149/1.2759618
  24. Lefebvre M. C., Conway B. E. Nucleation and Morphologies in the Process of Electrocrystallization of Aluminium on Smooth Gold and Glassy-Carbon Substrates. J. Electroanal. Chem., 2000, vol. 480, pp. 46–58. https://doi.org/10.1016/S0022-0728(99)00444-1
  25. Julien C. M., Massot M., Poinsignon C. Lattice Vibrations of Manganese Oxides – Part 1. Periodic Structures. Spectrochimica Acta Part: A Molecular and Biomolecular Spectroscopy, 2004, vol. 60, no. 3, pp. 689– 700. https://doi.org/10.1016/S1386-1425(03)00279-8
  26. Dubal D. P., Kim W. B., Lokhande C. D. Surfactant Assisted Electrodeposition of MnO2 Thin Films: Improved Supercapacitive Properties. Journal of Alloys and Compounds, 2011, vol. 509, no. 41, pp. 10050–10054. https://doi.org/10.1016/j.jallcom.2011.08.029
  27. Aghazadeh M., Asadi M., Maragheh M. G., Ganjali M. R., Norouzi P., Faridbod F. Facile preparation of MnO2 nanorods and evaluation of their supercapacitive characteristics. Applied Surface Science, 2016, vol. 364, pp. 726–731. https://doi.org/10.1016/j.apsusc.2015.12.227
  28. Nam K.-W., Kim K.-B. Manganese Oxide Film Electrodes Prepared by Electrostatic Spray Deposition for Electrochemical Capacitors. Journal of the Electrochemical Society, 2006, vol. 153, no. 1, pp. 81–88. https://doi.org/10.1149/1.2131821
  29. Kuo S. L., Wu N. L. Investigation of Pseudocapacitive Charge-Storage Reaction of MnO2·nH2O Supercapacitors in Aqueous Electrolytes. J. Electrochem. Soc., 2006, vol. 153, pp. 1317–1324. https://doi.org/10.1149/1.2197667
  30. Ragupathy P., Vasan H. N., Munichandraiah N. Synthesis and Characterization of Nano-MnO2 for Electrochemical Supercapacitor Studies. J. Electrochem. Soc., 2008, vol. 155, pp. 34–40. https://doi.org/10.1149/1.2800163
  31. Augustyn V., Come J., Lowe M. A., Kim J. W., Taberna P.-L., Tolbert S. H., Abruña H. D., Simon P., Dunn B. High-Rate Electrochemical Energy Storage Through Li+ Intercalation Pseudocapacitance. Nature Materials, 2013, vol. 12, no. 6, pp. 518–522. https://doi.org/10.1038/nmat3601
  32. Mahdi F., Javanbakht M., Shahrokhian S. Insite pulse electrodeposition of manganese dioxide/reduced graphene oxide nanocomposite for high-energy supercapacitors. Journal of Energy Storage, 2022, vol. 46, art. 103802. https://doi.org/10.1016/j.est.2021.103802 
Received: 
05.02.2025
Accepted: 
09.06.2025
Published: 
30.06.2025