ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Mit'kin V. N., Galitskii A. A., Vovchuk V. E. Self-discharge dynamics and accelerated test approach for state-of-charge forecast for lithium cells BR2325. Electrochemical Energetics, 2008, vol. 8, iss. 1, pp. 20-32. DOI: 10.18500/1608-4039-2008-8-1-20-32, EDN: JVPALN

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Language: 
Russian
Article type: 
Article
EDN: 
JVPALN

Self-discharge dynamics and accelerated test approach for state-of-charge forecast for lithium cells BR2325

Autors: 
Mit'kin V. N., Institute of Inorganic Chemistry of A. V. Nikolaev of the Siberian Branch of RAS
Galitskii A. A., Institute of Inorganic Chemistry of A. V. Nikolaev of the Siberian Branch of RAS
Vovchuk V. E., Institute of Inorganic Chemistry of A. V. Nikolaev of the Siberian Branch of RAS
Abstract: 

There were investigated the self-discharge dynamics in two homogeneous groups («A» and «B») of the coin lithium cells ВR2325 on the basis of superstoichiometric fluorocarbon CF1.20, selected from the uniform experimental batch of 10000 pieces. The reason of two different groups («A» and «B») appearance through 3–6 months of storage is connected with the origin of hydrogen fluoride in cathodes of group «A» cells, which will be derivated at auto catalytic hydrolysis of C-F-bonds by a moisture tracers (0.1–0.5%). It was established, that a self-discharge rate in the group «A» cells ten times exceeds the same in the group «B», and the intensity of a self-discharge processes is connected to microcorrosion migration reactions of metals from cathodic current-holder to the lithium anode. The self-discharge rate of the selected «B» group was studied both during real time storage at room temperature and various temperature exposure on cells during different time periods (T°C, t). It was shown that for this lithium cells group after 3 year storage an activation energies (Ea) both for self-discharge and microchemical processes of metal migration (Fe, Ni, Cr) from current pick-off to anode are almost similar and equal to 14–16 kcal/mol. The self-discharge processes for BR2325 at 25–80°C can be described using linear equation Q (T°C, t) = Q0 + W0t, the reaction rate can be approximated by the first order per time and by the zero order per migrating metal impurities. Based on the study of microcorrosion processes dynamics and an integrated computer-aided diagnostics of the regression multiparameter analysis the general approach to development of procedures of accelerated tests of these lithium cells was achieved. This approach is consisted of the combination of self-discharge rate study with simultaneous corrosion processes analysis.

Key words: 
Reference: 

1. Пат. 2103766 РФ. Углеродсодержащий материал для электродов химических источников тока и способ изготовления из него пористых электродов/ Митькин В. Н., Юданов Н. Ф., Галицкий А. А., Александров А. Б., Афанасьев В. Л., Мухин В. В., Рожков В. В., Ромашкин В. П., Тележкин В. В. 27.01.1997 г., БИ № 3, 1999.
2. Митькин В. Н. // Новейшие электродные материалы для литиевой химической энергетики. Новосибирск: Изд-во ОАО НЗХК, 2001.
3. Митькин В. Н., Левченко Л. М., Денисова Т. Н., Керженцева В. Е., Мухин В. В., Рожков В. В. // Технические условия на фторуглеродно-литиевый дисковый элемент марки BR2325 ТУ 34 9735–0005–03533984–99. Новосибирск, 1999. 30 с.
4. Mitkin V., Filatov S., Galkin P., Denisova T., Koreneva O., Shinelev E., Alexandrov A., Moukhin V. // Proc. of «The Thirteen Annual Battery Conference on Applications and Advances». USA, California, Long Beach: California State University, 1998. P. 423.
5. Mitkin V. N., Galkin P. S., Denisova T. N., Filatov S. V., Shinelev E. A. // Batteries, Capacitors and Fuel Cells, MRS Symp. Proc., USA, Massachusets, Boston, 1998. V. 496. P. 57.
6. Полуэктов Н. С., Мешкова С. Б., Полуэктова Е. Н. Аналитическая химия лития. М.: Наука, 1975.
7. Митькин В. Н., Левченко Л. М., Денисова Т. Н., Керженцева В. Е., Галкин П. С., Галицкий А. А., Коренева О. В., Мухин В. В., Рожков В. В. // Технические требования на фторуглеродную катодную массу ТТ 34 9735–2500–03533984–99. Новосибирск, 1999. 53 с.
8. Mitkin V. N., Levchenko L. M., Denisova T. N., Kerzhentseva V. E., Koreneva O. V., Demidov V. P., Pasechnik V. L., Mukhin V. V. // Abstr. Third Topical Seminar «Assian Priorities in Materials Development», Новосибирск, 1999. P. 65.
9. Vovtchuk V. E., Mitkin V. N., Kuzovnikov A. M., Dubrovin O. A., Monashev G. G., Karlov Yu.K. Development of improved non-destructive methods for state-of-charge diagnostics of commercial and pilot lithium coin cells 2325 // New Materials for Electro-chemical Systems. 2003. V. 6, № 2. P. 93–103.
10. Кедринский И. А., Дмитренко В. Е., Поваров Ю. М. Химические источники тока с литиевым электродом. Красноярск: Изд-во Красноярского ун-та, 1983. 248 с.
11. Фатеев С. А. Сохраняемость литий-фторуглеродных элементов // Электрохимия. 2000. Т. 36, № 7. С. 878.
12. Фатеев С. А., Денисова О. О., Монахова И. П. и др. Коррозия токосъемов в Li/CFx–элементах // Защита металлов. 1988. Т. 24. С. 284.
13. Фатеев С. А., Фиалков А. С. Влияние материала токосъема катода на характери-стики Li/CFx элементов // Электрохимия. 1988. Т. 24, вып. 1. С. 123–126. Деп. в ВИНИТИ 1987. № 3603–887.
14. Фатеев С. А., Кулова Т. Л., Скундин А. М. Литий-фторуглеродные источники питания для имплантируемых электрокардиостимуляторов // Электрохимическая энергетика. 2002. Т. 2, № 2. С. 97–101.
15. Митькин В. Н., Кузовников А. М., Вовчук В. Е., Шинелев Е. А., Карлов Ю. К. Временная методика ускоренных испытаний дисковых ХИТ BR2325 на сохранность, ИНХ СО РАН – ОАО НЗХК. Новосибирск, 2003. 2 с.

Received: 
28.02.2008
Accepted: 
28.02.2008
Published: 
31.03.2008