ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Baranov I. E., Fateev V. N., Lyutikova E. K., Akel'kina S. V., Seregina E. A. Effect of the catalyst layers structure on the pem fuel cell perfomance. Electrochemical Energetics, 2015, vol. 15, iss. 1, pp. 14-22. DOI: 10.18500/1608-4039-2015-15-1-14-22, EDN: UDFJGL

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Language: 
Russian
Heading: 
Article type: 
Article
EDN: 
UDFJGL

Effect of the catalyst layers structure on the pem fuel cell perfomance

Autors: 
Baranov I. E., National Research Center "Kurchatov Institute"
Fateev Vladimir Nikolaevich, National Research Center "Kurchatov Institute"
Lyutikova Elena Konstantinovna, National Research Center "Kurchatov Institute"
Akel'kina Svetlana Vladimirovna, National Research Center "Kurchatov Institute"
Seregina Ekaterina Aleksandrovna, National Research Center "Kurchatov Institute"
Abstract: 

Using complex models, including the solution percolation problem and electrochemical kinetics calculations are considered the features of a solid polymer fuel cell catalyst layers with a catalyst based on nanoscale carbon materials, including graphene nanowires. These calculations are consistent with the experimental data presented by optimizing the composition of the catalyst layers. It is shown that the addition of 20 wt.\% nanofibres graphene can reduce ohmic losses from the ion current and improve the performance of the fuel cell is 20%

Reference: 

1. Baranov I. E., Fateev V. N., Sysoev A. V., Rusanov V. D. Modeling of thin catalyst layers with a random arrangement of the catalyst particles. Reports the Academy of Sciences (Chemistry), 1997, vol. 354, no. 1, pp. 55–58 (in Russian).
2. Passalacqua E., Lufrano F., Squadrio G., Patti A., Giorgi L. Nafion content in the catalyst layer of polymer electrolyte fuel cells: effects on structure and performance. Electrohim. Acta, 2001, vol. 46, pp. 799–805.
3. Chirkov G. Calculation of the electrochemical activity of porous electrodes. Rus. J. Electrochem., 2004, vol. 40, no. 1, pp. 30–34.
4. Baranov I., Fateev V., Sysoev A., Tsypkin M. Mathematical model of PEM-Fuel Cell catalytic layer. HYPOTHESIS II International Symposium, Grimstad, 1997, pp. 85–87.
5. Uchida M., Fukuoka Y., Sugawara Y. Improved preparation process of very low-platinum-loading electrodes for Polymer Electrolyte Fuel Cells. J. Electrochem. Soc., 1998, vol. 145, no. 11, pp. 75–90.
6. Uchida M., Aoyama Y. Investigation of the microstructure in the catalyst layer and effects of both perfluorosulfonate ionomer and PTFE-loaded Carbon on the catalyst layer of polymer electrolyte fuel cells. J. Electrochem. Soc., 1995, vol. 142, no. 12, pp. 57–82.
7. Shin J., Lee K. Effect of the catalytic ink preparation method on the performance of polymer electrolyte membrane fuel cells. J. Power Sources, 2002, vol. 106, pp. 185–198.
8. Uchida M., Aoyama Y. New Preparation Method for Polymer-Electrolyte fuel cells. J. Electrochem. Soc., 1995, vol. 142, no. 2, pp. 57–86.
9. Lee S. J., Mukerjee S. K., McBreen J. S., Rho Y. W., Kho Y. T., Lee T. H. Effect of Nafion impregnation on performances of PEMFC electrodes. Electrochim. Acta, 1998, vol. 43, no 24, pp. 3693–3701.
10. Shin. S. J., Lee J. K., Ha H. Y., Hong S. A., Chun H. S., Oh I. H. Effect of the catalytic ink preparation method on the performance of polymer electrolyte membrane fuel cells. J. Power Sources, 2002, vol.106, pp.146–152.
11. Kong C. S., Kim D. Y., Lee H. K., Shul Y. G., Lee T. H. Influence of pore-size distribution of diffusion layer of mass-transport problems of proton exchange membrane fuel cells. J. Power Sources, 2002, vol. 108, pp. 185–191.
12. Shklovskii B. I., Efros A. L. Electronic Properties of Doped Semiconductors. Berlin, Springer-Verlag. 1984. 396 p.
13. Fateev V. N., Baranov I. E., Sysoev A. V. Numerical modeling of electrocatalytic layer electrolytic solid polymer electrolyte. Rus. J.Electrochemistry, 1997, vol. 33, no. 8, pp. 950–953.
14. Fateev V. N., Friedmann A. A., Archakov O. I., Baranov I. E., Davletchin A. V., Kirillov I. A., Pahlova E. A. Model electrochemical layer of a solid polymer electrolyte. Rus. J. Electrochem., 1994, vol. 30, no. 11, pp. 1270–1277.
15. Passalacqua E., Lufrano F. Nafion content in the catalyst layer of polymer electrolyte fuel cells : effects on structure and perfomance. Electrochim. Acta, 2001, vol. 46, pp. 799–805.
16. Antolini E., Giorgi L., Pozio A., Passalaqua E. Influence of Nafion loading in the catalyst layer of gas-diffusion electrodes for PEFC. J. Power Sources, 1996, vol. 77, pp. 297–298.
17. Sung C. C., Liu C. Y., Colin C. J. Durability improvement at high current density by graphene networks on PEM fuel cell. Intrn. J. Hydrogen Energy, 2014, vol. 39, no. 24, pp.1–7.
18. Sehkyu P., Yuyan S., Haiying W., Peter C., Rieke V., Viswanathan V., Silas A. T., Saraf L. V. Design of graphene sheets-supported Pt catalyst layer in PEM fuel cells. Electrochem. Commun., 2011, vol. 13, pp. 258–263.
19. Grigoriev S. A., Lyutikova E. K., Maruseva I. V., Pimenov V. V., Presnyakov M. Y., Fateev V. N. Nanostructured electrocatalysts based on platinum and nickel for fuel cells with solid polymer electrolyte synthesized by magnetron sputtering pulsed. Intern. Scientific J. Alternative Energy and Ecology, 2014, no. 19 (156), pp. 107–116 (in Russian).

Received: 
15.01.2015
Accepted: 
15.01.2015
Published: 
25.02.2015