ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Zhuravlev V. D., Bushkova O. V., Pachuev A. V., Nefedova K. V. Electrochemical behavior of Li[Ni1/3Co1/3Mn1/3]O2 Catode material produced by scs procedure. Electrochemical Energetics, 2015, vol. 15, iss. 4, pp. 167-?. DOI: 10.18500/1608-4039-2015-15-4-167-174, EDN: WHOOCZ

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 149)
Language: 
Russian
Article type: 
Article
EDN: 
WHOOCZ

Electrochemical behavior of Li[Ni1/3Co1/3Mn1/3]O2 Catode material produced by scs procedure

Autors: 
Zhuravlev Viktor Dmitrievich, Institute of Solid State Chemistry
Bushkova Ol'ga Viktorovna, Institute of Solid State Chemistry
Nefedova Kseniya Valer'evna, Institute of Solid State Chemistry
Abstract: 

DOI: 10.18500/1608-4039-2015-15-4-167-174

In this paper, we present the results of electrochemical characterisation of a Li[Ni1/3Co1/3Mn1/3]O2 cathode material prepared by the solution combustion synthesis. Initially, [CoMnNi]Ox powder was obtained by combustion of cobalt, nickel and manganese nitrate solution with glycine or both glycine and citric acid. Li[Ni1/3Co1/3Mn1/3]O2 was then synthesised by annealing of the mixed oxide powder impregnated with lithium nitrate at 920–970°C. The discharge capacity and the capacity retention of the Li[Ni1/3Co1/3Mn1/3]O2 cathodes were found to be 141–149 and 131–137 mAh• g-1 for C/10 and C/2 rates, respectively. LISP-50 (lithium ion sealed prismatic) batteries with the Li[Ni1/3Co1/3Mn1/3]O2 cathode demonstrated during their testing that energy loss did not exceed 30% after 2000 cycles at the utilisation of 70%

Reference: 

1. Whittingham M. S. Electrical energy storage and intercalation chemistry. Science, 1976, vol. 192, pp. 1126–1127.
2. Myung S.-T., Amine K., Sun Y.-K. Nanostructured cathode materials for rechargeable lithium batteries. J. Power Sources, 2015, vol. 283, pp. 219–236.
3. Hu M., Pahg X., Zhou Z. Recent progress in high-voltage lithium ion batteries. J. Power Sources, 2013, vol. 237, pp. 229–242.
4. Nitta N., Wu F., Lee J. T., Yushin G. Li-ion battery materials: present and future. Materials Today, 2015, vol. 18, no. 5, pp. 252–264.
5. Chen J. Recent progress in advanced materials for lithium ion batteries. Materials, 2013, vol. 6, pp. 156–183.
6. Amine K., Kanno R., Tzeng Y. Rechargeable lithium batteries and beyond: Progress, challenges, and future directions. MRS Bull., 2014, vol. 39, pp. 395–401.
7. Daniel C., Mohanty D., Li J., Wood D. L. Cathode Materials Review. AIP Conf. Proc., 2014, vol. 1597, pp. 26–43.
8. Cheralathan K. K., Kang N. Y., Park H. S., You Jin Leea Y. J., Won Choon Choia W. C., Young Soo Kob Y. S., Parka Y-Ki. Preparation of spherical LiNi0.8 \mathring{ Co0.15Mn0.05O2 lithium-ion cathode material by continuous co-precipitation. J. Power Sources, 2010, vol. 195, pp. 1486–1494.
9. Johnson C., Li N., Lefief C., Thackeray M. M. Anomalous capacity and cycling stability of xLi2MnO3•  (1-x)LiMO2 electrodes (M = Mn, Ni, Co) in lithium batteries at 50°C. Electrochem. Commun., 2007, vol. 9, pp. 787–795.
10. Belharouak I., Lu W., Vissers D., Amine K. Safety characteristics of Li(Ni0.8Co0.15Al0.05)O2 and Li(Ni1/3Co1/3Mn1/3)O2. Electrochem. Commun., 2006, vol. 8, pp. 329–335.
11. Chang Z., Chen Z., Wu F., Tang H., Zhu Z. Yuan X. Y., Wang H. Synthesis and characterization of high-density non-spherical Li(Ni1/3Co1/3Mn1/3)O2 cathode material for lithium ion batteries by two-step drying method. Electrochim Acta, 2008, vol. 53, pp. 5927–5933
12. Cho T-H, Shiosaki Y., Noguchi H. Preparation and characterization of layered LiMn1/3Ni1/3Co1/3O2 as a cathode material by an oxalate co-precipitation method. J. Power Sources, 2006, vol. 15, pp. 1322–1327.
13. Dai K-H., Xie Y-T., Wang Y-J., Song Z-S., Qilu. Effect of fluorine in the preparation of Li(Ni1/3Co1/3Mn1/3)O2 via hydroxide co-precipitation. Electrochim. Acta, 2008, vol. 53, pp. 3257–3261.
14. Deng C., Zhang S., Ma L. Sun Y. H., Yang S. Y., Fu B. L., Liu F. L., Wu Q. Effects of precipitator on the morphological, structural and electrochemical characteristics of Li[Ni1/3Co1/3Mn1/3]O2 prepared via carbonate co precipitation. J. Alloys and Compd., 2011, vol. 509, pp. 1322–1327.
15. Chuan-yue H., Jun G., Yong D., Hong-hui X., Yue-hui H. Effects of synthesis conditions on layered Li[Ni1/3Co1/3Mn1/3]O2 positive-electrode via hydroxide co-precipitation method for lithium-ion batteries. Trans. Noferrous met. Soc. China, 2011, vol. 21, pp. 114–120.
16. Cho T-H., Shiosaki Y., Noguchi H. Preparation and characterization of layered LiMn1/3Ni1/3Co1/3O_2 as a cathode material by an oxalate co-precipitation method. J. Power Sources, 2006, vol. 159, pp. 1322–1327.
17. Guo J., Jiao L. F., Yuan H. T., Li H. X., Zhang M., Wang Y. M. Effect of synthesis condition on the structural and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2 prepared by the metal acetates decomposition method. Electrochim Acta, 2006, vol. 51, pp. 3731–3735.
18. Ju S. H., Kim D. Y., Kang Y. C. The characteristics of Li(Ni1/3Co1/3Mn1/3)O2 particles prepared from precursor particles with spherical shape obtained by spray pyrolysis. Ceram Int., 2007, vol. 33, pp. 1093–1098.
19. Kim J-M., Kumagai N., Kadoma Y, Yashiro H. Synthesis and electrochemical properties of lithium nonstoichiometric Li1+x(Ni1/3Co1/3Mn1/3)O2+\delta prepared by a spray drying method. J. Power Sources, 2007, vol. 174, pp. 473–479.
20. Lin B., Wen Z., Gu Z., Huang S. Morphology and electrochemical performance of Li[Ni1/3Co1/3Mn1/3]O2 cathode material by a slurry spray drying method. J. Power Sources, 2008, vol. 175, pp. 564–569.
21. Rileya L. A., Van Attac S., Cavanagh A. S., Yan Y., Georgee S. M., Liuc P., Dillon A. C., Hee S-H. Electrochemical effects of ALD surface modification on combustion synthesized LiNi1/3Mn1/3Co1/3O2 as a layered-cathode material. J. Power Sources, 2011, vol. 196, pp. 3317–3324.
22. Guo J., Jiao L. F., Yuan H. T., Li H. X., Zhang M., Wang Y. M. Effect of synthesis condition on the structural and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2 prepared by the metal acetates decomposition method. Electrochim. Acta, 2006, vol. 51, pp. 3731–3735
23. Wen J-W., Zhang D-W., Teng Y-C., Chen C-H., Xiong Y. One-step synthesis and improved electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2 by a modified radiated polymer gel method. Electrochim. Acta, 2010, vol. 55, pp. 2306–2310.
24. Mukasyan A. S., Epstein P., Dinka P. Solution combustion synthesis of nanomaterials. Proc. Combust. Inst., 2007, vol. 31, pp. 1789–1795.
25. Nefedova K. V., Zhuravlev V. D. Issledovanie usloviy sinteza tonkodispersnyh oksidov nikelya, kobalta I marganza [Investigation of the conditions of synthesis of fine oxides of nickel, cobalt and manganese]. J. Perspektivnye Materialy, 2011, no. 12, pp. 380–386 (in Russian).
26. Zhuravlev V. D., Bamburov V. G., Ermakova L. V., Lobachevskaya N. I. Synthesis of Functional Materials in Combustion Reactions. Physics of Atomic Nuclei, 2015, vol. 77, no. 12, pp. 1–17.
27. Zhuravlev V. D., Shekoldin S. I., Nefedova K. V. Sposob poluchenia katodnogo materiala dlia litiy ionnych akkumuliyatorov [A method for producing a cathode material for lithium-ion batteries]. Patent RF no. 2451369. 2012. MPK H01M 4/52 (in Russian).
28. Periasamy P., Kalaiselvi N., Kim H. S. High Voltage and High Capacity Characteristics of Li(Ni1/3Co1/3Mn1/3)O2 Cathode for Lithium Battery Applications. Intern. J. Electrochem. Sci., 2007, vol. 2, pp. 689–699.

Received: 
01.11.2015
Accepted: 
01.11.2015
Published: 
25.12.2015