ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)

For citation:

Kulova T. L., Skundin A. M. The Problems of Low-temperature Lithium-ion Batteries. Electrochemical Energetics, 2017, vol. 17, iss. 2, pp. 61-88. DOI: 10.18500/1608-4039-2017-17-2-61-88, EDN: ZVROZR

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 49)
Article type: 

The Problems of Low-temperature Lithium-ion Batteries

Kulova Tat'yana L'vovna, Institute of Physical Chemistry and Electrochemistry of A. N. Frumkina of RAS
Skundin Aleksandr Mordukhaevich, Institute of Physical Chemistry and Electrochemistry of A. N. Frumkina of RAS


The critical analysis of literature of last 15 years, concerning features of low-temperature behavior of lithium-ion batteries is presented. Some generalized approaches to the problem as well as the role of main polarization components at low temperatures; features of functioning of negative and positive electrodes are reviewed. Some low-temperature electrolytes are reviewed as well.



1. Zhang S. S., Xu K., Jow T. R. The low temperature performance of Li-ion batteries. J. Power Sources, 2003, vol. 115, pp. 137–140.

2. Huang C.-K., Sakamoto J. S., Wolfenstine J., Surampudia S. The Limits of Low-Temperature Performance of Li-Ion Cells. J. Electrochem. Soc., 2000, vol. 147, pp. 2893–2896.

3. Lin H.-P., Chua D., Salomon M., Shiao H. C., Hendrickson M., Plichta E., Slane S. Low-Temperature Behavior of Li-Ion Cells. Electrochem. Solid-State Lett., 2001, vol. 4, pp. A71–A73.

4. Nagasubramanian G. Electrical characteristics of 18650 Li-ion cells at low temperatures. J. Appl. Electrochem., 2001, vol. 31, pp. 99–104.

5. Zhu G., Wen K., Lv W., Zhou X., Liang Y., Yang F., Chen Z., Zou M., Li J., Zhang Y., He W. Materials insights into low-temperature performances of lithium-ion batteries. J. Power Sources, 2015, vol. 300, pp. 29–40.

6. Fan J., Tan S. Studies on Charging Lithium-Ion Cells at Low Temperatures. J. Electrochem. Soc., 2006, vol. 153, pp. A1081–A1092.

7. Zhang S. S., Xu K., Jow T. R. Electrochemical impedance study on the low temperature of Li-ion batteries. Electrochim. Acta, 2004, vol. 49, pp. 1057–1061.

8. Fan J. On the discharge capability and its limiting factors of commercial 18650 Li-ion cell at low temperatures. J. Power Sources, 2003, vol. 117, pp. 170–178.

9. Abraham D. P., Heaton J. R., Kang S.-H., Dees D. W., Jansen A. N. Investigating the Low-Temperature Impedance Increase of Lithium-Ion Cells. J. Electrochem. Soc., 2008, vol. 155, pp. A41–A47.

10. Smart M. C., Ratnakumar B. V., Surampudi S. Electrolytes for Low-Temperature Lithium Batteries Based on Ternary Mixtures of Aliphatic Carbonates. J. Electrochem. Soc., 1999, vol. 146, pp. 486–492.

11. (Alex) Shiao H.-C., Chua D., Hsiu-ping Lin, Slane S., Salomon M. Low temperature electrolytes for Li-ion PVDF cells. J. Power Sources, 2008, vol. 87, pp. 167–173.

12. Wang Ch., Appleby A. J., Little F. E. Low-Temperature Characterization of Lithium-Ion Carbon Anodes via Microperturbation Measurement. J. Electrochem. Soc., 2002, vol. 149, pp. A754–A760.

13. Sawai K., Ohzuku T. Factors Affecting Rate Capability of Graphite Electrodes for Lithium-Ion Batteries. J. Electrochem. Soc., 2003, vol. 150, pp. A674–A678.

14. Plichta E. J., Hendrickson M., Thompson R., Au G., Behl W. K., Smart M. C., Ratnakumar B. V., Surampudi S. Development of low temperature Li-ion electrolytes for NASA and DoD applications. J. Power Sources, 2001, vol. 94, pp. 160–162.

15. Herreyre S., Huchet O., Barrusseau S., Perton F., Bodet J. M. New Li-ion electrolytes for low temperature applications. J. Power Sources, 2001, vol. 97–98, pp. 576–580.

16. Ohta A., Koshina H., Okuno H., Mural H. Relationship between carbonaceous materials and electrolyte in secondary lithium-ion batteries. J. Power Sources, 1995, vol. 54, pp. 6–10.

17. Smart M. C., Lucht B. L., Dalavi S., Krause F. C., Ratnakumara B. V. The Effect of Additives upon the Performance of MCMB/LiNixCo1 ? xO2 Li-Ion Cells Containing Methyl Butyrate-Based Wide Operating Temperature Range Electrolytes. J. Electrochem. Soc., 2012, vol. 159, pp. A739–A751.

18. Li Ch., Hua N., Wang Ch., Kang X., Wumair T., Han Y. Effect of Mn2+-doping in LiFePO4 and the low temperature electrochemical performances. J. Alloys and Compounds, 2011, vol. 509, pp. 1897–1900.

19. Waldmann T., Wilka M., Kasper M., Fleischhammer M., Wohlfahrt-Mehrens M. Temperature dependent ageing mechanisms in Lithium-ion batteries – A Post-Mortem study. J. Power Sources, 2014, vol. 262, pp. 129–135.

20. Christensen J., Newman J. Cyclable Lithium and Capacity Loss in Li-Ion Cells. J. Electrochem. Soc., 2005, vol. 152, pp. A818–A829.

21. Smart M. C., Ratnakumar B. V., Surampudi S., Wang Y., Zhang X., Greenbaum S. G., Hightower A., Ahn C. C., Fultz B. Irreversible Capacities of Graphite in Low-Temperature Electrolytes for Lithium-Ion Batteries. J. Electrochem. Soc., 1999, vol. 146, pp. 3963–3969.

22. Wrodnigg G. H., Besenhard J. O., Winter M. Ethylene Sulfite as Electrolyte Additive for Lithium-Ion Cells with Graphitic Anodes. J. Electrochem. Soc., 1999, vol. 146, pp. 470–472.

23. Zhang S. S., Xu K., Jow T. R. Low temperature performance of graphite electrode in Li-ion cells. Electrochim. Acta, 2002, vol. 48, pp. 241–246.

24. Puglia F., Gitzendanner R., Marsh C., Curran T. Development of true prismatic lithium-ion cells for high rate and low temperature applications. J. Power Sources, 2001, vol. 96, pp. 40–46.

25. Smart M. C., Whitacre J. F., Ratnakumar B. V., Amine K. Electrochemical performance and kinetics of Li1 + x(Co1/3Ni1/3Mn1/3)1 ? xO2 cathodes and graphite anodes in low-temperature electrolytes. J. Power Sources, 2007, vol. 168, pp. 501–508.

26. Jow T. R., Marx M. B., Allen J. L. Distinguishing Li+ Charge Transfer Kinetics at NCA/Electrolyte and Graphite/Electrolyte Interfaces, and NCA/Electrolyte and LFP/Electrolyte Interfaces in Li-Ion Cells. J. Electrochem. Soc., 2012. Vol. 159, pp. A604–A612.

27. Jow R., Zhang S. S., Xu K., Allen J. Electrolytes for Low Temperature Operations of Li-Ion Batteries. ECS Trans. 2007, vol. 3, no. 27, pp. 51–58.

28. Xu K. «Charge-Transfer» Process at Graphite/Electrolyte Interface and the Solvation Sheath Structure of Li+ in Nonaqueous Electrolytes. J. Electrochem. Soc., 2007, vol. 154, pp. A162–A167.

29. Jow T. R., Allen J. L., Marx M., Nechev K., Deveney B., Rickman S. Electrolytes, SEI and Charge Discharge Kinetics of Li-ion Batteries. ECS Trans., 2010, vol. 25, no. 36, pp. 3–12.

30. Nobili F., Dsoke S., Mecozzi T., Marassi R. Metal-oxidized graphite composite electrodes for lithium-ion batteries. Electrochim. Acta, 2005, vol. 51, pp. 536–544.

31. Nobili F., Mancini M., Dsoke S., Tossici R., Marassi R. Low-temperature behavior of graphite–tin composite anodes for Li-ion batteries. J. Power Sources, 2010, vol. 195, pp. 7090–7097.

32. Nobili F., Meschini I., Mancini M., Tossici R., Marassi R., Croce F. High-performance Sn@carbon nanocomposite anode for lithium-ionbatteries: Lithium storage processes characterization and low-temperature behavior. Electrochim. Acta, 2013, vol. 107, pp. 85– 92.

33. Elia G. A., Nobili F., Tossici R., Marassi R., Savoini A., Panero S., Hassoun J. Nanostructured tin–carbon/LiNi0.5Mn1.5O4 lithium-ion battery operating at low temperature. J. Power Sources, 2015, vol. 275, pp. 227–233.

34. Nobili F., Mancini M., Stallworth P. E., Croce F., Greenbaum S. G., Marassi R. Tin-coated graphite electrodes as composite anodes for Li-ion batteries. Effects of tin coatings thickness toward intercalation behavior. J. Power Sources, 2012, vol. 198, pp. 243–250.

35. Mancini M., Nobili F., Dsoke S., D’Amico F., Tossici R., Croce F., Marassi R. Lithium intercalation and interfacial kinetics of composite anodes formed by oxidized graphite and copper. J. Power Sources, 2009, vol. 190, pp. 141–148.

36. Marinaro M., Mancini M., Nobili F., Tossici R., Damen L., Marassi R. A newly designed Cu/Super-P composite for the improvement of low-temperature performances of graphite anodes for lithium-ion batteries. J. Power Sources, 2013, vol. 222, pp. 66–71.

37. Huang Q., Yang Z., Mao J. Research progress on the low-temperature electrochemical performance of Li4Ti5O12 anode material. Ionics, 2017, vol. 23, pp. 803–811.

38. Allen J. L., Jow T. R., Wolfenstine J. Low temperature performance of nanophase Li4Ti5O12. J. Power Sources, 2006, vol. 159, pp. 1340–1345.

39. Yuan T., Cai R., Ran R., Zhou Y., Shao Z. A mechanism study of synthesis of Li4Ti5O12 from TiO2 anatase. J. Alloys and Compounds, 2010, vol. 505, pp. 367–373.

40. Yuan T., Wang K., Cai R., Ran R., Shao Z. Cellulose-assisted combustion synthesis of Li4Ti5O12 adopting anatase TiO2 solid as raw material with high electrochemical performance. J. Alloys and Compounds, 2009, vol. 477, pp. 665–672.

41. Yuan T., Yu X., Cai R., Zhou Y., Shao Z. Synthesis of pristine and carbon-coated Li4Ti5O12 and their low-temperature electrochemical performance. J. Power Sources, 2010, vol. 195, pp. 4997–5004.

42. Pohjalainen E., Kallioinen J., Kallio T. Comparative study of carbon free and carbon containing Li4Ti5O12 electrodes. J. Power Sources, 2015, vol. 279, pp. 481–486.

43. Pohjalainen E., Rauhala T., Valkeapaa M., Kallioinen J., Kallio T. Effect of Li4Ti5O12 Particle Size on the Performance of Lithium Ion Battery Electrodes at High C-Rates and Low Temperatures. J. Phys. Chem. C. 2015, vol. 119, pp. 2277–2283.

44. Zhu Y.-R., Yin L.-C., Yi T.-F., Liu H., Xie Y., Zhu R.-S. Electrochemical performance and lithium-ion intercalation kinetics of submicron-sized Li4Ti5O12 anode material. J. Alloys and Compounds, 2013, vol. 547, pp. 107–112.

45. Liu, J., Wei, X., Liu, X.-W. Two-dimensional wavelike spinel lithium titanate for fast lithium storage. Scientific Reports, 2015, vol. 5, paper no. 9782.

46. Nugroho A., Chang W., Su Jin Kim, Kyung Yoon Chung, Kim J. Superior high rate performance of core–shell Li4Ti5O12/carbon nanocomposite synthesized by a supercritical alcohol approach. RSC Adv., 2012, vol. 2, no. 29, pp. 10805–10808.

47. Shen L., Li H., Uchaker E., Zhang X., Cao G. General Strategy for Designing Core–Shell Nanostructured Materials for High-Power Lithium Ion Batteries. Nano Lett., 2012, vol. 12, pp. 5673–5678.

48. Yuan T., Cai R., Shao Z. Different Effect of the Atmospheres on the Phase Formation and Performance of Li4Ti5O12 Prepared from Ball-Milling-Assisted Solid-Phase Reaction with Pristine and Carbon-Precoated TiO2 as Starting Materials. J. Phys. Chem. C. 2011, vol. 115, pp. 4943–4952.

49. Peng L., Zhang H., Fang L., Zhang Y., Wang Y. Novel peapoded Li4Ti5O12 nanoparticles for high-rate and ultralong-life rechargeable lithium ion batteries at room and lower temperatures. Nanoscale, 2016, vol. 8, pp. 2030–2040.

50. Marinaro M., Nobili F., Birrozzi A., Eswara Moorthy S. K., Kaiser U., Tossici R., Marassi R. Improved low-temperature electrochemical performance of Li4Ti5O12 composite anodes for Li-ion batteries. Electrochim. Acta, 2013, vol. 109, pp. 207– 213.

51. Zhang Y., Luo Y., Chen Y., Lu T., Yan L., Cui X., Xie J. Enhanced rate capability and low temperature performance of Li4Ti5O12 anode material by facile surface fluorination. ACS Appl. Mater. Interfaces, 2017, vol. 9, pp. 17145–17154.

52. Bai Y.-J., Gong C., Qi Y.-X., Lun N., Feng J. Excellent long-term cycling stability of La-doped Li4Ti5O12 anode material at high current rates. J. Mater. Chem., 2012, vol. 22, pp. 19054–19060.

53. Zou H. L., Xiang H. F., Liang X., Feng X. Y., Cheng S., Jin Y., Chen C. H. Electrospun Li3.9Cr0.3Ti4.8O12 nanofibers as anode material for high-rate and low-temperature lithium-ion batteries. J. Alloys and Compounds, 2017, vol. 701, pp. 99–106.

54. Marinaro M., Pfanzelt M., Kubiak P., Marassi R., Wohlfahrt-Mehrens M. Low temperature behaviour of TiO2 rutile as negative electrode material for lithium-ion batteries. J. Power Sources, 2011, vol. 196, pp. 9825– 9829.

55. Markevich E., Salitra G., Aurbach D. Low Temperature Performance of Amorphous Monolithic Silicon Anodes: Comparative Study of Silicon and Graphite Electrodes. J. Electrochem. Soc., 2016, vol. 163, pp. A2407–A2412.

56. Zou M., Li J., Wen W., Chen L., Guan L., Lai H., Huang Z. Silver-incorporated composites of Fe2O3 carbon nanofibers as anodes for high-performance lithium batteries. J. Power Sources, 2014, vol. 270, pp. 468–474.

57. Li J., Wen W., Xu G., Zou M., Huang Z., Guan L. Fe-added Fe3C carbon nanofibers as anode for Li ion batteries with excellent low-temperature performance. Electrochim. Acta, 2015, vol. 153, pp. 300–305.

58. Wang Y., He P., Zhou H. Olivine LiFePO4: development and future. Energy Environ. Sci., 2011, vol. 4, pp. 805–817.

59. Ellis B. E., Kyu Tae Lee, Nazar L. F. Positive Electrode Materials for Li-Ion and Li-Batteries. Chem. Mater., 2010, vol. 22, pp. 691–714.

60. Zaghib K., Guerfi A., Hovington P., Vijh A., Trudeau T., Mauger A., Goodenough J. B., Julien C. M. Review and analysis of nanostructured olivine-based lithium recheargeable batteries: Status and trends. J. Power Sources, 2013, vol. 232, pp. 357–369.

61. Chung S. Y., Bloking J. T., Chiang Y.-M. Electronically conductive phospho-olivines as lithium storage electrodes. Nat. Mater., 2002, vol. 1, pp. 123–128.

62. Amin R., Maier J., Balaya P., Chen D. P., Lin C. T. Ionic and electronic transport in single crystalline LiFePO4 grown by optical floating zone technique. Solid State Ionics, 2008, vol. 179, pp. 1683–1687.

63. Li J., Yao W., Martin S., Vaknin D. Lithium ion conductivity in single crystal LiFePO4. Solid State Ionics, 2008, vol. 179, pp. 2016–2019.

64. Andersson A. S., Thomas J. O., Kalska B., Haggstrom L. Thermal Stability of LiFePO4-Based Cathodes. Electrochem. Solid-State Lett., 2000, vol. 3, pp. 66–68.

65. Zhao N., Li Y., Zhao X., Zhi X., Liang G. Effect of particle size and purity on the low temperature electrochemical performance of LiFePO4/C cathode material. J. Alloys and Compounds, 2016, vol. 683, pp. 123–132.

66. Zhao N., Zhi X., Wang Li., Liu Y., Liang G. Effect of microstructure on low temperature electrochemical properties of LiFePO4/C cathode material. J. Alloys and Compounds, 2015, vol. 645, pp. 301–308.

67. Liao L., Zuo P., Ma Y., Chen X., An Y., Gao Y., Yin G. Effects of temperature on charge/discharge behaviors of LiFePO4 cathode for Li-ion batteries. Electrochim. Acta, 2012, vol. 60, pp. 269– 273.

68. Zhou Y., Gu C. D., Zhou J. P., Cheng L. J., Liu W. L., Qiao Y. Q., Wang X. L., Tu J. P. Effect of carbon coating on low temperature electrochemical performance of LiFePO4/C by using polystyrene sphere as carbon source. Electrochim. Acta, 2011, vol. 56, pp. 5054–5059.

69. Li Sh., Liu X., Liu G., Wan Y., Liu H. Highly enhanced low-temperature performances of LiFePO4/C cathode materials prepared by polyol route for lithium-ion batteries. Ionics, 2017, vol. 23, pp. 19–26.

70. Li S.-M., Liu X. C., Mi R., Liu H., Li Y. C., Lau W.-M., Mei J. A facile route to modify ferrous phosphate and its use as an iron containing resource for LiFePO4 via a polyol process. ACS Appl. Mater. Interfaces, 2014, vol. 6, pp. 9449–9457.

71. Fan J. M., Chen J. J., Chen Y. X., Huang H. H., Wei Z. K., Zheng M. S., Dong Q. F. Hierarchical structure LiFePO4@C synthesized by oleylamine-mediated method for low temperature applications. J. Mater. Chem. A. 2014, vol. 2, pp. 4870–4873.

72. Yao B., Ding Z., Zhang J., Feng X, Yin L. Encapsulation of LiFePO4 by in situ graphitized carbon cage towards enhanced low temperature performance as cathode materials for lithium ion batteries. J. Solid State Chem. 2014, vol. 216, pp. 9–12.

73. Zheng J.-C., Zhang B., Zhang M., Wu L. Low-temperature Electrochemical Performance of LiFePO4/C Cathode with 3D Conducting Networks. Chem. Lett., 2012, vol. 41, pp. 232–233.

74. Wu X.-L., Guo Y.-G., Su J., Xiong J.-W., Zhang Y.-L., Wan L.-J. Carbon-Nanotube-Decorated Nano-LiFePO4@C Cathode Material with Superior High-Rate and Low-Temperature Performances for Lithium-Ion Batteries. Adv. Energy Mater., 2013, vol. 3, pp. 1155–1160.

75. Cai G., Guo R., Liu L., Yang Y., Zhang C., Wu C., Guo W., Jiang H. Enhanced low temperature electrochemical performances of LiFePO4/C by surface modification with Ti3SiC2. J. Power Sources, 2015, vol. 288, pp. 136–144.

76. Gong C., Xue Z., Wang X., Zhou X.-P., Xie X.-L., Mai Y.-W. Poly(ethylene glycol) grafted multi-walled carbon nanotubes/LiFePO4 composite cathodes for lithium ion batteries. J. Power Sources, 2014, vol. 246, pp. 260–268.

77. Xie H.-M., Wang R.-S., Ying J.-R., Zhang L.-Y., Jalbout A. F., Yu H.-Y., Yang G.-L., Pan X.-M., Su Z.-M. Optimized LiFePO4–Polyacene Cathode Material for Lithium-Ion Batteries. Adv. Mater., 2006, vol. 18, pp. 2609–2613.

78. Chang W., Kim S.-J., Park I.-T., Cho B.-W., Chung K. Y., Shin H.-C. Low temperature performance of LiFePO4 cathode material for Li-ion batteries. J. Alloys and Compounds, 2013, vol. 563, pp. 249–253.

79. Zou B., Yu R., Deng M., Zhou Y., Liao J., Chen C. Solvothermal synthesized LiMn1 ? xFexPO4@C nanopowders with excellent high rate and low temperature performances for lithium-ion batteries. RSC Advances. 2016, vol. 6, pp. 52271–52278.

80. Zhang H., Xu Y., Zhao C., Yang X., Jiang Q. Effects of carbon coating and metal ions doping on low temperature electrochemical properties of LiFePO4 cathode material. Electrochim. Acta, 2012, vol. 83, pp. 341– 347.

81. Yao J., Wu F., Qiu X., Li N., Su Y. Effect of CeO2-coating on the electrochemical performances of LiFePO4/C cathode material. Electrochim. Acta, 2011, vol. 56, pp. 5587–5592.

82. Huang H., Yin S.-C., Kerr T., Taylor N., Nazar L. F. Nanostructured Composites: A High Capacity, Fast Rate Li3V2(PO4)3/Carbon Cathode for Rechargeable Lithium Batteries. Adv. Mater., 2002, vol. 14, pp. 1525–1528.

83. Saidi M. Y., Barker J., Huang H., Swoyer J. L., Adamson G. Performance characteristics of lithium vanadium phosphate as a cathode material for lithium-ion batteries. J. Power Sources, 2003, vol. 119–121, pp. 266–272.

84. Qiao Y. Q., Wang X. L., Zhou Y., Xiang J. Y., Zhang D., Shi S. J., Tu J. P. Electrochemical performance of carbon-coated Li3V2(PO4)3 cathode materials derived from polystyrene-based carbon-thermal reduction synthesis. Electrochim. Acta, 2010, vol. 56, pp. 510–516.

85. Rui X. H., Jin Y., Feng X. Y., Zhang L. C., Chen C. H. A comparative study on the low-temperature performance of LiFePO4/C and Li3V2(PO4)3/C cathodes for lithium-ion batteries. J. Power Sources, 2011, vol. 196, pp. 2109–2114.

86. Teng F., Hu Z.-H., Ma X.-H., Zhang L.-C., Ding C.-X., Yu Y., Chen C.-H. Hydrothermal synthesis of plate-like carbon-coated Li3V2(PO4)3 and its low temperature performance for high power lithium ion batteries. Electrochim. Acta, 2013, vol. 91, pp. 43– 49.

87. Qiao Y. Q., Tu J. P., Wang X. L., Gu C. D. The low and high temperature electrochemical performances of Li3V2(PO4)3/C cathode material for Li-ion batteries. J. Power Sources, 2012, vol. 199, pp. 287– 292.

88. Liu Z., Kang X., Li C., Hua N., Wumair T., Han Y. Low-temperature behavior of Li3V2(PO4)3/C as cathode material for lithium ion batteries. J. Solid State Electrochem., 2012, vol. 16, pp. 1917–1923.

89. Tai L.-H., Zhao Q., Sun L.-Q., Cong L.-N., Wu X.-L., Zhang J.-P., Wang R.-S., Xie H.-M., Chen X.-H. A study of the electrochemical behavior at low temperature of the Li3V2(PO4)3 cathode material for Li-ion batteries. New J. Chem. 2015, vol. 39, pp. 9617–9626.

90. Cai G., Yang Y., Guo R., Zhang C., Wu C., Guo W., Liu Z., Wan Y., Jiang H. Synthesis and low temperature electrochemical properties of CeO2 and C co-modified Li3V2(PO4)3 cathode materials for lithium-ion batteries. Electrochim. Acta, 2015, vol. 174, pp. 1131–1140.

91. Sun D., Wu C., Guo R., Liu Z., Xie D., Zheng M., Wang B., Peng J., Jiang H. Enhanced low temperature electrochemical properties of Li3V2(PO4)3/C modified by a mixed conductive network of Ti3SiC2 and C. Ceramics International, 2017, vol. 43, pp. 2791–2800.

92. Lu Z., MacNeil D., Dahn J. Layered Cathode Materials Li[NixLi(1/3 ? 2x/3)Mn(2/3 ? x/3)]O2 for Lithium-ion Batteries. Electrochem. Solid. State Lett., 2001, vol. 4, pp. A191–A194.

93. Lu Z., Beaulieu L., Donaberger R., Thomas C., Dahn J. Synthesis, Structure, and Electrochemical Behavior of Li[NixLi1/3 ? 2x/3Mn2/3 ? x/3]O2. J. Electrochem. Soc., 2002, vol. 149, pp. A778–A791.

94. Li Z., Wang Y., Bie X., Zhu K., Wang C., Chen G., Wei Y. Low temperature properties of the Li[Li0.2Co0.4Mn0.4]O2 cathode material for Li-ion batteries. Electrochem. Comm., 2011, vol. 13, pp. 1016–1019.

95. Qiu B., Wang J., Xia Y., Wei Z., Han S., Liu Z. Temperature dependence of the initial coulombic efficiency in Li-rich layered Li[Li0.144Ni0.136Co0.136Mn0.544]O2 oxide for lithium-ions batteries. J. Power Sources, 2014, vol. 268, pp. 517–521.

96. Liu G., Li S., Mei J., Liu L.-M., Cui Y., Liu H. New insights into low temperature properties of Li-rich layered cathode materials. J. Power Sources, 2017, vol. 353, pp. 51–57.

97. Takahashi I., Fukuda K., Kawaguchi T., Komatsu H., Oishi M., Murayama H., Hatano M., Terai T., Arai H., Uchimoto Y., Matsubara E. Quantitative Analysis of Transition-Metal-Migration Induced Electrochemically in “Lithium-Rich Layered Oxide Cathode” and Its Property to Contribution at High and Low Temperatures. J. Phys. Chem. C, 2016, no. 120, pp. 27109–27116.

98. Yu H., Wang Y., Asakura D., Hosono E., Zhang T., Zhou H. Electrochemical kinetics of the 0.5Li2MnO3?0.5LiMn0.42Ni0.42Co0.16O2 ‘composite’ layered cathode material for lithium-ion batteries. RSC Adv., 2012, vol. 2, pp. 8797–8807.

99. Yu C., Wang H., Guan X., Zheng J., Li L. Conductivity and electrochemical performance of cathode xLi2MnO3?(1-x)LiMn1/3Ni1/3Co1/3O2 (x = 0.1, 0.2, 0.3, 0.4) at different temperatures. J. Alloys Compd., 2013, vol. 546, pp. 239–245.

100. Kou J., Chen L., Su Y., Bao L., Wang J., Li N., Li W., Wang M., Chen S., Wu F. Role of Cobalt Content in Improving the Low-Temperature Performance of Layered Lithium-Rich Cathode Materials for Lithium-Ion Batteries. ACS Appl. Mater. and Interfaces. 2015, vol. 7, pp. 17910–17918.

101. Chen S., Chen L., Li Y., Su Y., Lu Y., Bao L., Wang J., Wang M., Wu F. Synergistic effects of stabilizing the surface structure and lowering the interface resistance in improving the low temperature performances of layered lithium-rich materials. ACS Appl. Mater. Interfaces, 2017, vol. 9, pp. 8641–8648.

102. Park B.-C., Kim H.-B., Bang H. J., Prakash J., Sun Y.-K. Improvement of Electrochemical Performance of Li[Ni0.8Co0.15Al0.05]O2 Cathode Materials by AlF3 coating at Various Temperatures. Ind. Eng. Chem. Res., 2008, vol. 47, pp. 3876–388.

103. Tan S. Y., Wang L., Bian L., Xu J. B., Ren W., Hu P. F., Chang A. M. Highly enhanced low temperature discharge capacity of LiNi1/3Co1/3Mn1/3O2 with lithium boron oxide glass modification. J. Power Sources, 2015, vol. 277, pp. 139–146.

104. Li Y., Qian K., He Y.-B., Kaneti Y. V., Liu D., Luo D., Li H., Li B., Kang F. Study on the reversible capacity loss of layered oxide cathode during low-temperature operation. J. Power Sources, 2017, vol. 342, pp. 24–30.

105. Chen R., Ren S., Mu X., Maawad E., Zander S., Hempelmann R., Hahn H. High-Performance Low-Temperature Li+ Intercalation in Disordered Rock-Salt Li–Cr–V Oxyfluorides. ChemElectroChem, 2016, vol. 3, pp. 892–895.

106. Sides C. R., Martin C. R. Nanostructured Electrodes and the Low-Temperature Performance of Li-Ion Batteries. Adv. Mater., 2005, vol. 17, pp. 125–128.

107. Wang P.-P., Xu C.-Y., Li W.-D., Wang L., Zhen L. Low temperature electrochemical performance of ?LixV2O5 cathode for lithium-ion batteries. Electrochim. Acta, 2015, vol. 169, pp. 440–446.

108. Liao X.-Z., Ma Z.-F., Gong Q., He Y.-S, Pei L., Zeng L. J. Low-temperature performance of LiFePO4/C cathode in a quaternary carbonate-based electrolyte. Electrochem. Comm., 2008, vol. 10, pp. 691–694.

109. Smart M. C., Ratnakumar B. V., Whitcanack L. D., Chin K. B., Surampudi S., Croft H., Tice D., Staniewicz R. Improved low-temperature performance of lithium-ion cells with quaternary carbonate-based electrolytes. J. Power Sources, 2003, vol. 119–121, pp. 349–358.

110. Zhang S. S., Xu K., Jow T. R. An improved electrolyte for the LiFePO4 cathode working in a wide temperature range. J. Power Sources, 2006, vol. 159, pp. 702–707.

111. Lai Y., Peng B., Zhang Z., Li J. A Wide Operating Temperature Range Electrolyte Containing Lithium Salts Mixture and a Co-Solvent for the LiFePO4 Cathode. J. Electrochem. Soc., 2014, vol. 161, pp. A875–A879.

112. Li J., Yuan C. F., Guo Z. H., Zhang Z. A., Lai Y. Q., Liu J. Limiting factors for low-temperature performance of electrolytes in LiFePO4/Li and graphite/Li half cells. Electrochim. Acta, 2012, vol. 59, pp. 69–74.

113. Liao L., Cheng X., Ma Y., Zuo P., Fang W., Yin G., Gao Y. Fluoroethylene carbonate as electrolyte additive to improve low temperature performance of LiFePO4 electrode. Electrochim. Acta, 2013, vol. 87, pp. 466–472.

114. Liu B., Li B., Guanz S. Effect of Fluoroethylene Carbonate Additive on Low Temperature Performance of Li-Ion Batteries. Electrochem. Solid-State Lett., 2012, vol. 15, pp. A77–A79.

115. Contestabile M., Morselli M., Paraventi R., Neat R. J. A comparative study on the effect of electrolyte/additives on the performance of ICP383562 Li-ion polymer (soft-pack) cells. J. Power Sources, 2003, vol. 119–121, pp. 943–947.

116. Xu K. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem. Rev. 2004, vol. 104, pp. 4303–4417.

117. Zhang S. S. A review on electrolyte additives for lithium-ion batteries. J. Power Sources, 2006, vol. 162, pp. 1379–1394.

118. Ein-Eli Y., Thomas S. R., Chadha R., Blakley T. J., Koch V. R. Li-ion Battery Electrolyte Formulated for Low-Temperature Applications. J. Electrochem. Soc., 1997, vol. 144, pp. 823–829.

119. Smart M. C., Ratnakumar B. V., Surampudi S. Use of Organic Esters as Cosolvents in Electrolytes for Lithium-Ion Batteries with Improved Low Temperature Performance. J. Electrochem. Soc., 2002, vol. 149, pp. A361–A370.

120. Smart M. C., Ratnakumar B. V., Ryan-Mowrey V. S., Surampudi S., Prakash G. K. S., Hu J., Cheung I. Improved performance of lithium-ion cells with the use of fluorinated carbonate-based electrolytes. J. Power Sources, 2003, vol. 119–121, pp. 359–367.

121. Xiao L. F., Cao Y. L., Ai X. P., Yang H. X. Optimization of EC-based multi-solvent electrolytes for low temperature applications of lithium-ion batteries. Electrochim. Acta, 2004, vol. 49, pp. 4857–4863.

122. Zhang S. S., Xu K., Jow T.R. A new approach toward improved low temperature performance of Li-ion battery. Electrochem. Comm., 2002, vol. 4, pp. 928–932.

123. Zhang S. S., Xu K., Allen J. L., Jow T. R. Effect of propylene carbonate on the low temperature performance of Li-ion cells. J. Power Sources, 2002, vol. 110, pp. 216–221.

124. Hamlen R., Au G., Brundage M., Hendrickson M., Plichta E., Slane S., Barbarello J. US Army portable power program. J. Power Sources., 2001, vol. 97–98, pp. 22–24.

125. Plichta E. J., Behl W. K. A low-temperature electrolyte for lithium and lithium-ion batteries. J. Power Sources, 2000, vol. 88, pp. 192–196.

126. Krause F. C., Hwang C., Ratnakumar B. V., Smart M. C., McOwen D. W., Henderson W. A. The Use of Methyl Butyrate-Based Electrolytes with Additives to Enable the Operation of Li-Ion Cells with High Voltage Cathodes over a Wide Temperature Range. ECS Trans, 2014, vol. 58, no. 48, pp. 97–107.

127. Smart M. C., Ratnakumar B. V., Chin K. B., Whitcanack L. D. Lithium-Ion Electrolytes Containing Ester Cosolvents for Improved Low Temperature Performance. J. Electrochem. Soc., 2010, vol. 157, pp. A1361–A1374.

128. Smart M. C., Hwang C., Krause F. C., Soler J., West W. C., Ratnakumar B. V., Amine K. Wide Operating Temperature Range Electrolytes for High Voltage and High Specific Energy Li-Ion Cells. ECS Trans, 2013, vol. 50, no. 26, pp. 355–364.

129. Cappetto A., Cao W. J., Luo J. F., Hagen M., Adams D., Shelikeri A., Xu K., Zheng J. P. Performance of wide temperature range electrolytes for Li-Ion capacitor pouch cells. J. Power Sources, 2017, vol. 359, pp. 205–214.

130. Sazhin S. V., Khimchenko M.Yu., Tritenichenko Y. N., Lim H. S. Performance of Li-ion cells with new electrolytes conceived for low-temperature applications. J. Power Sources, 2000, vol. 87, pp. 112–117.

131. Yaakov D., Gofer Y., Aurbach D., Halalay I. C. On the Study of Electrolyte Solutions for Li-Ion Batteries That Can Work Over a Wide Temperature Range. J. Electrochem. Soc., 2010, vol. 157, pp. A1383–A1391.

132. Nakajima T., Dan K.-I., Koh M. Effect of fluoroesters on the low temperature electrochemical characteristics of graphite electrode. J. Fluorine Chem. 1998, vol. 87, pp. 221–227.

133. Smith K. A., Smart M. C., Prakash G. K. S., Ratnakumar B. V. Electrolytes Containing Fluorinated Ester Co-Solvents for Low-Temperature Li-Ion Cells. ECS Trans, 2008, vol. 11, no. 29, pp. 91–98.

134. Kim K. M., Ly N. V., Won J. H., Lee Y.-G., Cho W. I., Ko J. M., Kaner R. B. Improvement of lithium-ion battery performance at low temperature by adopting polydimethylsiloxane-based electrolyte additives. Electrochim. Acta, 2014, vol. 136, pp. 182–188.

135. Won J. H., Lee H. S., Hamenu L., Latifatu M., Lee Y. M., Kim K. M., Oh J., Cho W. I., Ko J. M. Improvement of low-temperature performance by adopting polydimethylsiloxane-g-polyacrylate and lithium-modified silica nanosalt as electrolyte additives in lithium-ion batteries. J. Ind. Eng. Chem., 2016, vol. 37, pp. 325–329.

136. Hamenu L., Lee H. S., Latifatu M., Kim K. M., Park J., Baek Y. G., Ko J. M., Kaner R. B. Lithium-silica nanosalt as a low-temperature electrolyte additive for lithium-ion batteries. Current Applied Physics, 2016, vol. 16, pp. 611–617.

137. Xiang H., Mei D., Yan P., Bhattacharya P., Burton S. D., von Wald Cresce A., Cao R., Engelhard M. H., Bowden M. E., Zhu Z., Polzin B. J., Wang C. M., Xu K., Zhang J. G., Xu W. The Role of Cesium Cation in Controlling Interphasial Chemistry on Graphite Anode in Propylene Carbonate-Rich Electrolytes. ACS Appl. Mater. Interfaces, 2015, vol. 7, pp. 20687–20695.

138. Zheng J., Yan P., Cao R., Xiang H., Engelhard M. H., Polzin B. J., Wang C., Zhang J. G., Xu W. Effects of Propylene Carbonate Content in CsPF6-Containing Electrolytes on the Enhanced Performances of Graphite Electrode for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces, 2016, vol. 8, pp. 5715–5722.

139. Li Q., Jiao S., Luo L., Ding M. S., Zheng J., Cartmell S. S., Wang C.-M., Xu K., Zhang J.-G., Xu W. Wide-Temperature Electrolytes for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces, 2017, vol. 9, pp. 18826–18835.

140. Zhang S. S., Xu K., Jow T. R. Low-temperature performance of Li-ion cells with a LiBF4-based electrolyte. J. Solid State Electrochem., 2003, vol. 7, pp. 147–151.

141. Jow T. R., Ding M. S., Xu K., Zhang S. S., Allen J. L., Amine K., Henriksen G. L. Nonaqueous electrolytes for wide-temperature-range operation of Li-ion cells. J. Power Sources, 2003, vol. 119–121, pp. 343–348.

142. Zhang S. S., Xu K., Jow T. R. Enhanced performance of Li-ion cell with LiBF4-PC based electrolyte by addition of small amount of LiBOB. J. Power Sources, 2006, vol. 156, pp. 629–633.

143. Zhang S. S. An unique lithium salt for the improved electrolyte of Li-ion battery. Electrochem. Comm., 2006, vol. 8, pp. 1423–1428.

144. Mandal B. K., Padhi A. K., Shi Z., Chakraborty S., Filler R. New low temperature electrolytes with thermal runaway inhibition for lithium-ion rechargeable batteries. J. Power Sources, 2006, vol. 162, pp. 690–695.