ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Kulova T. L., Emets V. V., Skundin A. M. The dynamic character of processes taking place at aging of electrodes based on silicon composites. Electrochemical Energetics, 2016, vol. 16, iss. 1, pp. 3-9. DOI: 10.18500/1608-4039-2016-16-1-3-9, EDN: YPTGIH

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 53)
Language: 
Russian
Article type: 
Article
EDN: 
YPTGIH

The dynamic character of processes taking place at aging of electrodes based on silicon composites

Autors: 
Kulova Tat'yana L'vovna, Institute of Physical Chemistry and Electrochemistry of A. N. Frumkina of RAS
Emets Viktor Vladimirovich, Institute of Physical Chemistry and Electrochemistry of A. N. Frumkina of RAS
Skundin Aleksandr Mordukhaevich, Institute of Physical Chemistry and Electrochemistry of A. N. Frumkina of RAS
Abstract: 

УДК 544.65+621.355.9

DOI:  https://doi.org/10.18500/1608-4039-2016-16-1-3-9

The aging behaviour of thin-film multi-layered electrodes consisting from alternating layers of Si-O and Si-O-Al has been studied with using of electrochemical impedance spectroscopy (EIS). The equivalent circuit comprising weak inductance, ohmic resistance, and three parallel combinations of resistance and \text{CPE was proposed. The most interesting feature of the EIS data is non-monotonous change equivalent circuit components during the storage. This fact testifies dynamic character of SEI which manifests itself not only at the cycling but at OCP storage as well.

Reference: 

1. Broussely M., Herreyre S., Biensan P., Kasztejna P., Nechev P., Stanievicz R. J. Aging mechanism in Li ion cells and calendar life predictions. J. Power Sources, 2001, vol. 97/98, pp. 13-21.
2. Bloom I., Cole B. W., Sohn J. J., Jones S. A., Polzin E. G., Battaglia V. S., Henriksen G. L., Motloch C., Richardson R., Unkelhaeuser T., Ingersoll D., Case H. L. An accelerated calendar and cycle life study of Li-ion cells. J. Power Sources, 2001, vol. 101, pp. 238-247.
3. Wright R. B., Motloch C. G., Belt J. R., Christophersen J. P., Ho C. D., Richardson R. A., Bloom I., Jones S. A., Battaglia V. S., Henriksen G. L., Unkelhaeuser T., Ingersoll D., Case H. L., Rogers S. A., Sutula R. A. Calendar- and cycle-life studies of advanced technology development program generation 1 lithium-ion batteries. J. Power Sources, 2002, vol. 110, pp. 445–470.
4. Qi Zhang, White R. E. Calendar life study of Li-ion pouch cells. J. Power Sources, 2007, vol. 173, pp. 990–997.
5. Sarre G., Blanchard Ph., Broussely M. Aging of lithium-ion batteries. J. Power Sources, 2004, vol. 127, pp. 65–71.
6. Kassem M., Bernard J., Revel R., P\'elissie S., Duclaud F., Delacourt C. Calendar aging of a graphite / LiFePO_4 cell. J. Power Sources, 2012, vol. 208, pp. 296–305.
7. Ecker M., Gerschler J. B., Vogel J., K"abitz S., Hust F., Dechent Ph., Sauer D. U. Development of a lifetime prediction model for lithium-ion batteries based on extended accelerated aging test data. J. Power Sources, 2012, vol. 215, pp. 248-257.
8. Ecker M., Nieto N., K"abitz S., Schmalstieg J., Blanke H., Warnecke A., Sauer D. U. Calendar and cycle life study of Li(NiMnCo)O2-based 18650 lithium ion batteries. J. Power Sources, 2014, vol. 248, pp. 839-851.
9. K"abitz, Gerschler J. B., Ecker M., Yurdagel Y., Emmermacher B., Andr\'e D., Mitsch T., Sauer D. U. Cycle and calendar life study of a graphite\vert LiNi1/3Mn1/3Co1/3O2 Li-ion high energy system. Part A\,: Full cell characterization. J. Power Sources, 2013, vol. 239, pp. 572-583.
10. Bloom I., Walker L. K., Basco J. K., Abraham D. P., Christophersen J. P., Ho C. D. Differential voltage analyses of high-power lithium-ion cells. 4. Cells containing. NMC. J. Power Sources, 2010, vol. 195, P. 877–882.
11. Belt J., Utgikar V., Bloom I. Calendar and PHEV cycle life aging of high-energy, lithium-ion cells containing blended spinel and layered-oxide cathodes. J. Power Sources, 2011, vol. 196, pp. 10213–10221.
12. Kulova T. L. Skundin A. M. Electrode Materials for Lithium-Ion Batteries of New Generation. Russian Journal of Electrochemistry, 2012, vol. 48, no. 3, pp. 330-335.
13. Kulova T. L., Skundin A. M., Andreev V. N., Gryzlov D. Yu., Mironenko A. A., Rudy A. S., Gusev V. N., Naumov V. V. The study of thin-film electrodes of silicon-aluminum-oxygen system for lithium-ion battery. Elektrokhimicheskaya energetika [Electrochemical energetics], 2013, vol. 13. no. 3. pp. 136-143 (in Russian).
14. Kulova T. L., Skundin A. M., Andreev V. N., Gryzlov Yu. D., Mironenko A. A., Rudyi A. S., Gusev V. N., Naumov V. V. Cyclic Voltammetry Studies of Silicon–Aluminum Thin-Film Electrodes Synthesized in the Presence of Oxygen. Russian Journal of Electrochemistry. 2015, vol. 51, no. 12, pp. 1157–1161.
15. Boukamp B. A. A Nonlinear Least Squares Fit procedure for analysis of immittance data of electrochemical systems. Solid State Ionics, 1986, vol. 20, pp. 31-44.
16. Berdnikov A. E., Gerashchenko V. N., Gusev V. N., Kulova T. L., Metlitskaya A. V., Mironenko A. A., Rudyi A. S., Skundin A. M. A Silicon-Containing Nanocomposite for a Thin_Film Lithium-Ion Battery. Technical Physics Letters, 2013, vol. 39, no. 4, pp. 350–352.
17. Kulova T. L., Mironenko A. A., Skundin A. M., Rudy A. S., Naumov V. V., Pukhov D. E. Study of Silicon Composite for Negative Electrode of Lithium-Ion Battery. Intern. J. Electrochem. Sci., 2016, vol. 11, pp. 1370-1381.
18. Kulova, T. L., Pleskov Yu. V., Skundin A. M., Terukov E. I., Kon’kov O. I.. Lithium Intercalation into Amorphous-Silicon Thin Films\,: An Electrochemical-Impedance Study. Russian J. Electrochemistry, 2006, vol. 42, no. 7, pp. 708–714.
19. Kang Y.-M., Go J.-Y., Lee S.-M., Choi W.-U. Impedance study on the correlation between phase transition and electrochemical degradation of Si-based materials. Electrochem. Comm., 2007, vol. 9, pp. 1276–1281.
20. Jiang T., Zhang Sh., Qiu X., Zhu W., Chen L. Preparation and characterization of silicon-based three-dimensional cellular anode for lithium ion battery. Electrochem. Comm., 2007, vol. 9, pp. 930–934.
21. Xu Y.H., Yin G.P., Ma Y.L., Zuo P.J., Cheng X.Q. Simple annealing process for performance improvement of silicon anode based on polyvinylidene fluoride binder. J. Power Sources, 2010, vol. 195, pp. 2069–2073.
22. Han G.-B., Ryou M.-H., Cho K.Y., Lee Y. M., Park J.-K. Effect of succinic anhydride as an electrolyte additive on electrochemical characteristics of silicon thin-film electrode. J. Power Sources, 2010, vol. 195, pp. 3709–3714.
23. Lv R., Yang J., Wang J., NuLi Y. Electrodeposited porous-microspheres Li–Si films as negative electrodes in lithium-ion batteries. J. Power Sources, 2011, vol. 196, pp. 3868–3873.
24. Usui H., Yamamoto Y., Yoshiyama K., Itoh T., Sakaguchi H. Application of electrolyte using novel ionic liquid to Si thick film anode of Li-ion battery. J. Power Sources, 2011, vol. 196, pp. 3911–3915.
25. Radvanyi E., Van Havenbergh K., Porcher W., Jouanneau S., Bridel J.-S., Put S., Franger S. Study and modeling of the Solid Electrolyte Interphase behavior on nano-silicon anodes by Electrochemical Impedance Spectroscopy. Electrochim. Acta, 2014, vol. 137, pp. 751–757.

Received: 
04.12.2015
Accepted: 
04.12.2015
Published: 
25.02.2016