ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Chudinov E. A., Groshkova Y. A., Ermakov D. С., Ogarev A. S. Study of the influence of electrolyte on the properties of lithium iron phosphate batteries with carbon-modified electrodes. Electrochemical Energetics, 2025, vol. 25, iss. 3, pp. 124-135. DOI: 10.18500/1608-4039-2025-25-3-124-135, EDN: OJXNAW

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 81)
Language: 
Russian
Article type: 
Article
UDC: 
541.136
EDN: 
OJXNAW

Study of the influence of electrolyte on the properties of lithium iron phosphate batteries with carbon-modified electrodes

Autors: 
Chudinov Evgeny Alekseevich, Limited Liability Company “RENERA”
Groshkova Yulia A., Limited Liability Company “RENERA”
Ermakov Dmitry Сергеевич, Limited Liability Company “RENERA”
Ogarev Anton S., Limited Liability Company “RENERA”
Abstract: 

It was studied that the quality of the electrolyte of lithium-iron-phosphate batteries has a significant effect on their service life and operational characteristics. It was shown that TS-EDM01 and DGZh018 electrolytes can be used in the production of lithium iron phosphate batteries. It was found that the use of carbon in modifying the surface of LiFePO4 and electrode manufacturing increases the stability, service life and specific characteristics of batteries.

Acknowledgments: 
The authors express their gratitude to the chief researcher, head of the department of electrochemical energy of Ufa Institute of Chemistry of the Ufa Federal Research Center of the Russian Academy of Sciences, Doctor of Chemical Sciences, Professor Vladimir S. Kolosnitsyn for assistance in the work and provision of the data on the analysis of the quality of electrolytes.
Reference: 
  1. Nichugovskiy G. F. Opredelenie vlazhnosti khimicheskikh veshchestv [Determination of the humidity of chemicals]. Leningrad, Khimiya, 1977. 200 p. (in Russian).
  2. Titrimetricheskie metody analiza nevodnykh rastvorov. Pod red. V. D. Bezuglogo [Bezuglyi V. D., ed. Titrimetric methods for the analysis of non-aqueous solutions]. Moscow, Khimiya, 1986. 383 p. (in Russian).
  3. Weissberger A., Proskauer E. S., Riddick J. A., Toops E. E. Organic solvents. Physical properties and methods of purification. New York : Wiley, 1955. VII + 552 p. (Russ. ed.: Moscow, Izd-vo inostr. lit., 1958. 520 p.).
  4. Kreshkov A. P. Analiticheskaya khimiya nevodnykh rastvorov [Analytical chemistry of non-aqueous solutions]. Moscow, Khimiya, 1982. 256 p. (in Russian).
  5. Terborg L., Nowak S., Passerini S., Winter M., Karst U., Haddad P. R., Nesterenko P. N. Ion chromatographic determination of hydrolysis products of hexafluorophosphate salts in aqueous solution. Anal. Chim. Acta, 2012, vol. 714, pp. 121–126. https://doi.org/10.1016/J.ACA.2011.11.056
  6. Lekgoathi M. D. S., Vilakazi B. M., Wagener J. B., Le Roux J. P., Moolman D. Decomposition kinetics of anhydrous and moisture exposed LiPF6 salts by thermogravimetry. J. Fluor. Chem., 2013, vol. 149, pp. 53–56. https://doi.org/10.1016/j.jfluchem.2013.02.011
  7. Kawamura T., Okada S., Yamaki J. Decomposition reaction of LiPF6-based electrolytes for lithium ion cells. J. Power Sources, 2006, vol. 156, pp. 547–554. https://doi.org/10.1016/j.jpowsour.2005.05.084
  8. Lux S. F., Lucas I. T., Pollak E., Passerini S., Winter M., Kostecki R. The mechanism of HF formation in LiPF6 based organic carbonate electrolytes. Electrochem. Commun., 2012, vol. 14, pp. 47–50. https://doi.org/10.1016/j.elecom.2011.10.026
  9. Reed W. Solutions in diflourophosporic acid. A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of philosophy in a department of Chemistry. University of British Colombia, January 1968.
  10. Berlin A. Ya. Tekhnika laboratornykh rabot v organicheskoi khimii [Laboratory technology of organic chemistry]. Moscow, Gosudarstvennoe nauchnotekhnicheskoe izdatel’stvo khimicheskoi literatury, 1952. 287 p. (in Russian).
  11. Volkov A. I., Zharsky I. M. Bol’shoi khimicheskii spravochnik [Large Chemical Handbook]. Minsk, Sovremennaya shkola, 2005. 526 p. (in Russian).
  12. Chen M., Wang X., Shu H., Yu R., Yang X., Huang W. Solvothermal Synthesis of Monodisperse Micro-Nanostructure Starfish-Like Porous LiFePO4 as Cathode Material for Lithium-Ion Batteries. J. Alloys Compd., 2015, vol. 652, pp. 213–219. https://doi.org/10.1016/j.jallcom.2015.08.221
  13. Liu Z., Lee J., Lindner H. Effects of conducting carbon on the electrochemical performance of LiCO2 and LiMn2O4 cathodes. J. Power Sources, 2001, vol. 97–98, pp. 361–365. https://doi.org/10.1016/S0378-7753(01)00549-3
  14. Chudinov E. A. Litii-zhelezo-fosfatnyi akkumulyator: monografiya [Lithium iron phosphate battery: Monograph]. Moscow, Pero, 2016. 83 p. (in Russian).
  15. Chudinov E. A. Litii-ionnyi akkumulyator: monografiya [Lithium-ion battery: Monograph]. Moscow, Pero, 2014. 82 p. (in Russian).
  16. Keller M. V., Savenko A. E. Assessment, monitoring and safety assurance during thermal heating of lithium-ion batteries. Bulletin of the Kerch State Marine Technological University. Series: Marine Technologies, 2023, no. 1, pp. 23–31 (in Russian).
  17. Yarmolenko O. V., Yudina A. V., Ignatova A. A. The state-of-the-art and prospects for the development of electrolyte systems for lithium power sources. Electrochemical Energetics, 2016, vol. 16, no. 4, pp. 155–195 (in Russian). https://doi.org/10.18500/1608-4039-2016-16-4-155-195, EDN: WEVYMR
  18. Borisevich S. S., Evshchik E. Yu., Il’ina M. G., Khamitov E. M., Mel’nikova T. I., Rubtsov R. Yu., Bushkova O. V., Dobrovol’skii Yu. A. Algorithm for Theoretical Assessment of the Electrochemical Stability of Electrolytes in Lithium-Ion Batteries by the Example of LiBF4 in the EC/DMC Mixture. Russian Journal of Electrochemistry, 2022, vol. 58, no. 11, pp. 766–778 (in Russian). https://doi.org/10.31857/S0424857022110044, EDN: ADMUKQ
Received: 
30.07.2025
Accepted: 
10.09.2025
Published: 
30.09.2025