For citation:
Grigor'eva O. Y., Kulova T. L., Skundin A. M. Studt of aluminum electrochemical stabikity in electrolytes of sodium-ion batteries. Electrochemical Energetics, 2016, vol. 16, iss. 1, pp. 30-33. DOI: 10.18500/1608-4039-2016-16-1-30-33, EDN: YPTGKZ
Studt of aluminum electrochemical stabikity in electrolytes of sodium-ion batteries
УДК 544.65+621.355.9
DOI: https://doi.org/10.18500/1608-4039-2016-16-1-30-33
Electrochemical stability of aluminum in 0.5М NaPF6 solutions in mixtures of ethylene carbonate – dimethylcarbonate – propylene carbonate and ethylene carbonate – dimethylcarbonate – diethylcarbonate has been studied with cycling voltammetry. The reality of aluminum using as current-collector in negative electrode of sodium-ion batteries is declared.
1. Ellis B. L., Nazar L. F. Sodium and sodium-ion energy storage batteries // Current Opinion in Solid State and Materials Science. 2012. Vol. 16. P. 168–177.
2. Kubota K., Komaba S. Review-Practical Issues and Future Perspective for Na-Ion Batteries // J. Electrochem. Soc. 2015. Vol. 162. P. A2538–A2550.
3. Julien Ch., Mauger A., Vijh A., Zaghib K. Lithium Batteries. Science and Technology. Switzerland: Springer Intern. Publ., 2016.% 626 p.
4. Диаграммы состояния двойных металлических систем: справочник: в 3 т. / под общ. ред. Н. П. Лякишева. М.: Машиностроение, 1996. Т. 1. С. 176.
5. Otaegui L., Goikolea E., Aguesse F., Armand M., Rojo T., Singh G. Effect of the electrolytic solvent and temperature on aluminium current collector stability: A case of sodium-ion battery cathode // J. Power Sources. 2015. Vol. 297. P. 168–173.