ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Kulova T. L., Li S. A., Skundin A. M. On degradation mechanism of lithium-sulfur batteries. Electrochemical Energetics, 2025, vol. 25, iss. 2, pp. 61-67. DOI: 10.18500/1608-4039-2025-25-2-61-67, EDN: AKBOXH

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 235)
Language: 
Russian
Article type: 
Article
UDC: 
544.6:521.3
EDN: 
AKBOXH

On degradation mechanism of lithium-sulfur batteries

Autors: 
Kulova Tat'yana L'vovna, Institute of Physical Chemistry and Electrochemistry of A. N. Frumkina of RAS
Li Sergey A., Institute of Physical Chemistry and Electrochemistry of A. N. Frumkina of RAS
Skundin Aleksandr Mordukhaevich, Institute of Physical Chemistry and Electrochemistry of A. N. Frumkina of RAS
Abstract: 

Using the method of normalized galvanostatic curves, as well as taking into account the changes in the half-charge and half-discharge potentials of an electrode, the latter based on a sulfur composite with reduced graphene oxide, it was established that the main reason for electrode degradation during cycling was the loss of active material (due to the shuttle transfer of polysulfides and sulfur from the positive electrode to the negative lithium one).

Acknowledgments: 
The work was carried out with the financial support of the Ministry of Science and Higher Education of the Russian Federation.
Reference: 
  1. Kolosnitsyn V. S., Karaseva E. V. Lithium– Sulfur Batteries: Problems and Solutions. Russ. J. Electrochem., 2022, vol. 44, pp. 548−552. https://doi.org/10.1134/S1023193508050029
  2. Ji X., Nazar L. F. Advances in Li–S batteries. J. Mater. Chem., 2010, vol. 20, pp. 9821–9826. https://doi.org/10.1039/B925751A
  3. Yang Y., Zheng G., Cui Y. Nanostructured sulfur cathodes. Chem. Soc. Rev., 2013, vol. 42, pp. 3018−3032. https://doi.org/10.1039/C2CS35256G
  4. Song M., Cairns E. J., Zhang Y. Lithium/sulfur batteries with high specific energy: Old challenges and new opportunities. Nanoscale, 2013, vol. 5, pp. 2186– 2204. https://doi.org/10.1039/C2NR33044J
  5. Manthiram A., Fu Y., Chung S.-H., Zu C., Su Y.-S. Rechargeable lithium–sulfur batteries. Chem. Rev., 2014, vol. 114, pp. 11751−11787. https://doi.org/10.1021/cr500062v
  6. Wild M., O’Neill L., Zhang T., Purkayastha R., Minton G., Marinescu M., Offer G. J. Lithium sulfur batteries, a mechanistic review. Energy Environ. Sci., 2015, vol. 8, iss. 12, pp. 3477–3494. https://doi.org/10.1039/C5EE01388G
  7. Kang W., Deng N., Ju J., Li Q., Wu D., Ma X., Li L., Naebe M., Cheng B. A review of recent developments in rechargeable lithium–sulfur batteries. Nanoscale, 2016, vol. 8, pp. 16541−16588. https://doi.org/10.1039/C6NR04923K
  8. Li G., Wang S., Zhang Y., Li M., Chen Z., Lu J. Revisiting the Role of Polysulfides in Lithium–Sulfur Batteries. Adv. Mater., 2018, vol. 30, art. 1705590. https://doi.org/10.1002/adma.201705590
  9. Zhu L., Zhang X., Zhang J., Ren H., Yao Y., Wang M., Song Y. A review on sulfur-based composite cathode materials for lithium-sulfur batteries: Progress and prospects. J. Alloys Compd., 2025,vol. 1010, art. 178282. https://doi.org/10.1016/j.jallcom.2024.178282
  10. Kulova T. L., Li S. A., Ryzhikova E. V., Skundin A. M. Possible causes of lithium–sulfur battery degradation. Russ. J. Electrochem., 2022, vol. 58, pp. 391−397. https://doi.org/10.1134/S102319352205007X
  11. Ji L., Rao M., Zheng H., Zhang L., Li Y., Duan W., Guo J., Cairns E. J., Zhang Y. Graphene Oxide as a Sulfur Immobilizer in High Performance Lithium/Sulfur Cells. J. Am. Chem. Soc., 2011, vol. 133, pp. 18522–18525. https://doi.org/10.1021/ja206955k
  12. Evers S., Nazar L. F. Graphene-enveloped sulfur in a one pot reaction: A cathode with good coulombic efficiency and high practical sulfur content. Chem. Commun., 2012, vol. 48, pp. 1233–1235. https://doi.org/10.1039/C2CC16726C
  13. Li N., Zheng M., Lu H., Hu Z., Shen C., Chang X., Ji G., Cao J., Shi Yi. High-rate lithium– sulfur batteries promoted by reduced graphene oxide coating. Chem. Commun., 2012, vol. 48, pp. 4106–4108. https://doi.org/10.1039/C2CC17912A
  14. Zhao M., Zhang Q., Huang J., Tian G., Nie J., Peng H., Wei F. Unstacked double-layer templated graphene for high-rate lithium–sulphur batteries. Nat. Commun., 2014, vol. 5, art. 3410. https://doi.org/10.1038/ncomms4410
  15. Yu M., Wang A., Tian F., Song H., Wang Y., Li C., Hong J., Shi G. Dual-protection of a graphenesulfur composite by a compact graphene skin and an atomic layer deposited oxide coating for a lithiumsulfur battery. Nanoscale, 2015, vol. 7, pp. 5292–5298. https://doi.org/10.1039/C5NR00166H
  16. Kulova T. L., Skundin A. M. The simple tool for diagnostics of electrode degradation causes upon cycling of lithium-ion batteries. Electrochemical Energetics, 2011, vol. 11, no. 4, pp. 171−178 (in Russian) https://doi.org/10.18500/1608-4039-2011-11-4-171-178  
Received: 
27.03.2025
Accepted: 
09.06.2025
Published: 
30.06.2025