ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Pantyukhina M. I., Dunyushkina L. A. New cathode material La2/3Cu3Ti4 – xFexO12 – δ for solid oxide fuel cell: Synthesis and electrical conductivity. Electrochemical Energetics, 2024, vol. 24, iss. 3, pp. 161-168. DOI: 10.18500/1608-4039-2024-24-3-161-168, EDN: ZQHMWE

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 9)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
539.23+544.6.018
EDN: 
ZQHMWE

New cathode material La2/3Cu3Ti4 – xFexO12 – δ for solid oxide fuel cell: Synthesis and electrical conductivity

Autors: 
Pantyukhina Marina Ivanovna, Institute of Solid State Chemistry
Dunyushkina Liliya Adibovna, Institute of high-temperature Electrochemistry UB of RAS
Abstract: 

Copper lanthanum titanate La2/3Cu3Ti4−xFexO12−δ x = 0–1 was doped with Fe3+ cations. The diagram of the dependence of the tolerance factor on the relative electronegativity of cations for all studied compositions was represented. It was shown that all the compositions exist in the region of existence of distorted perovskite. X-ray diffraction and X-ray phase analysis methods established the region of existence of solid solutions of La2/3Cu3Ti4−xFexO12−δ obtained by ceramic technology, which was 0 ⩽ x ⩽ 0.4. The temperature dependences of electrical conductivity for the compositions from the region of existence of solid solutions La2/3Cu3Ti4−xFexO12−δ were obtained. The ionic-electronic nature of conductivity was suggested. It was shown that the decrease of electronic conductivity under the increase of iron content was due to the compensation of electronic carriers formed during acceptor doping.

Reference: 
  1. Bhalla A. S., Ruyan Guo, Rustum Roy. The perovskite structure – a review of its role in ceramic science and technology. Mater. Res. Innov., 2000, vol. 4, no. 1, pp. 3–26. https://doi.org/10.1007/s100190000062
  2. Istomin S. Ya., Lyskov N. V., Mazo G. N., Antipov E. V. Electrode materials based on complex d-metal oxides for symmetrical solid oxide fuel cells. Russ. Chem. Rev., 2021, vol. 90, no. 6, pp. 644–676. https://10.1070/RCR4979
  3. Get’man E. I., Loboda S. N., Sidorkina M. A. CaCu3Ti4O12-based materials with variable copper content. Russian Journal of Inorganic Chemistry, 2009, vol. 54, no. 3, pp. 346–349. https://10.1134/S0036023609030024
  4. Zhuk N. A., Nekipelov S. V., Sivkov V. N., Sekushin N. A., Lutoev V. P., Makeev B. A., Koroleva A. V., Fedorova A. V., Koksharova L. A., Ignatova M. M., Korolev R. I. Magnetic and electric properties, ESR, XPS and NEXAFS spectroscopy of CaCu3Ti4O12 ceramics. Ceramics International, 2020, vol. 46, pp. 21410–21420. https://10.1016/j.ceramint.2020.05.239
  5. Zhuk N. A., Shugurov S. M., Belyy V. A., Makeev B. A., Yermolina M. V., Beznosikov D. S., Koksharova L. A. Thermal stability of CaCu3Ti4O12: Simultaneous thermal analysis and high-temperature mass spectrometric study. Ceramics International, 2018, vol. 44, pp. 20841–20844. https://10.1016/j.ceramint.2018.08.088
  6. Ahmad M. M., Kotb H. M., Joseph C., Kumar Sh., Alshoaibi A. Transport and Dielectric Properties of Mechanosynthesized La2/3Cu3Ti4O12 Ceramics. Crystals, 2021, vol. 11, article no. 313. https://10.3390/cryst11030313
  7. Shri Prakash B., Varma K. B. R. Effect of sintering conditions on the microstructural, dielectric, ferroelectric and varistor properties of CaCu3Ti4O12 and La2/3Cu3Ti4O12 ceramics belonging to the high and low dielectric constant members of ACu3M4O12 (A = alkali, alkaline-earth metal, rare-earth metal or vacancy, M = transition metal) family of oxides. Physica B, 2008, vol. 40, pp. 2246–2254. https://doi.org/10.1016/j.physb.2007.12.004
  8. Shri Prakash B., Varma K. B. R. Effect of sintering conditions on the dielectric properties of CaCu3Ti4O12 and La2/3Cu3Ti4O12 ceramics: A comparative study. Physica B, 2006, vol. 382, pp. 312–319. https://doi.org/10.1016/j.physb.2006.03.005
  9. Fu Zh., Nie H., Wei Y., Bo Zhang B., Chang A. Effect of Mn-doping on microstructure and electrical properties of La2/3Cu3Ti4O12 ceramics. J. Alloys Compd., 2020, vol. 847, article no. 156525. https://doi.org/10.1016/j.jallcom.2020.156525
  10. Fesenko E. G. Semeystvo perovskita i segnetoelektrichestvo [The perovskite family and ferroelectricity]. Moscow, Atomizdat, 1972. 248 p. (in Russian).
  11. Shannon R. D., Prewitt C. T. Effective ionic radii in oxides and fluorides. Acta Crystallogr., 1969, vol. 25, no. 3, pp. 925–946. https://doi.org/10.1107/s0567740869003220
  12. Khimya. Spravochnoe izdanie. Pod red. V. Shester, K.-H. Lautenschlegner [Shrster V., Lautenschlegner K.-H., eds. Chemistry. Reference edition]. Moscow, Khimiya, 1979. 139 p. (in Russian).
  13. Schmidt R., Sinclair D. C. Chapter 1. CaCu3Ti4O12 (CCTO) Ceramics for Capacitor Applications. In: Kristofer N. Muller, ed. Capacitors: Theory of Operation, Behavior and Safery Regulations. Nova Science Publishers Inc., 2013. 2013, pp. 1–33.
  14. Ngamou P. H. T., Bahlawane N. Influence of the Arrangement of the Octahedrally Coordinated Trivalent Cobalt Cations on the Electrical Charge Transport and Surface Reactivity. Chem. Mater., 2010, vol. 22, pp. 4158–4165. https://doi.org/10.1021/cm1004642
  15. Istomin S. Ya., Antipov E. V. Cathode materials based on perovskite-like transition metal oxides for intermediate temperature solid oxide fuel cells. Russian Chemical Reviews, 2013, vol. 82, no. 7, pp. 686– 700. https://doi.org/10.1070/RC2013v082n07ABEH004390
  16.  
Received: 
13.08.2024
Accepted: 
30.08.2024
Published: 
30.09.2024