ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)

For citation:

Kornev P. V., Kulova T. L., Kuz'mina A. A., Skundin A. M., Koshel' E. S., Klimova V. M. Neodymium-doped lithium titanate as anode material for lithium-ion batteries. Electrochemical Energetics, 2022, vol. 22, iss. 3, pp. 129-138. DOI: 10.18500/1608-4039-2022-22-3-129-138, EDN: HDLCBD

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 66)
Article type: 

Neodymium-doped lithium titanate as anode material for lithium-ion batteries

Kornev Pavel Valentinovich, Institute of Physical Chemistry and Electrochemistry of A. N. Frumkina of RAS
Kulova Tat'yana L'vovna, Institute of Physical Chemistry and Electrochemistry of A. N. Frumkina of RAS
Kuz'mina Anna Aleksandrovna, Institute of Physical Chemistry and Electrochemistry of A. N. Frumkina of RAS
Skundin Aleksandr Mordukhaevich, Institute of Physical Chemistry and Electrochemistry of A. N. Frumkina of RAS
Koshel' Elizaveta Sergeevna, N. S. Kurnakov Institute of General and Inorganic Chemistry RAS
Klimova Viktoriya Mikhailovna, Joint-stock company “Advanced Research Institute of Inorganic Materials named after Academician A. A. Bochvar”

Doped lithium titanate is known to be able to reversibly cycle in the potential range from 3 to 0.01 V and this ability depends both on the nature of the dopant and the doping level. In this work Li4Ti5O12 samples doped with Nd in the amount of 0.5 to 2.0% were studied. It was shown that while being cycled in the extended potential range, the samples with the doping level from 0.5 to 1.0% demonstrated the highest capacity.

  1. Kulova T. L., Kreshchenova Y. M., Kuz’mina A. A., Skundin A. M., Stenina I. A., Yarslavtsev A. B. New high-capacity anode materials based on gallium-doped lithiumti tanate. Mend. Commun., 2016, vol. 26, pp. 238–239.
  2. Kulova T. L., Kuz’mina A. A., Skundin A., Stenina I. A., Yarslavtsev A. B. Electrochemical Behavior of Gallium-Doped Lithium Titanate in a Wide Range of Potentials. Int. J. Electrochem. Sci., 2017, vol. 12, pp. 3197–3211.
  3. Kornev P. V., Kulova T. L., Kuzmina A. A., Tusseeva E. K., Skundin A. M., Klimova V. M., Koshel’ E. S. Europium-Doped Lithium Titanate as a Material for the Anodes of Lithium-Ion Batteries. Russian Journal of Physical Chemistry A, 2022, vol. 96, pp. 435–441.
  4. Yi T.-F., Xie Y., Wu Q., Liu H., Jiang L., Ye M., Zhu R. High rate cycling performance of lanthanum-modified Li4Ti5O12 anode materialsfor lithium-ion batteries. J. Power Sources, 2012, vol. 214, pp. 220–226.
  5. Ivanenko V. I., Maslova M. V., Kunshina G. B., Vladimirova S. V., Agafonov D. V. Lanthanum(III)-Doped Li4Ti5O12-Based Nanostructured Anode Material for Lithium-Ion Current Sources. Prot. Met. Phys. Chem. Surf., 2020, vol. 56, pp. 951–956.
  6. Gao J., Ying J., Jiang C., Wan C. Preparation and characterization of spherical La-doped Li4Ti5O12 anode material for lithium ion batteries. Ionics, 2009, vol. 15, pp. 597–601.
  7. Wang D., Zhang C., Zhang Y., Wang J., He D. Synthesis and electrochemical properties of La-doped Li4Ti5O12as anode material for Li-ion battery. Ceram. Int., 2013, vol. 39, pp. 5145–5149.
  8. Yao L., Ning Z., Guo S., Guo Y., Sun Y., Rambo C. R., Yuan T., Huang Z., Zhang C., He D. On the sol-gel synthesis mechanism of nanostructuredLi3.95La0.05Ti4.95Ag0.05O12 with enhanced electrochemical performance forlithium ion battery. Ceram. Int., 2017, vol. 43, pp. 3393–3400.
  9. Gao J., Jiang C., Wan C. Synthesis and Characterization of Spherical La-Doped Nanocrystalline Li4Ti5O12/C Compound for Lithium-IonBatteries. J. Electrochem. Soc., 2010, vol. 157, pp. K39–K42.
  10. Zhang L., Zhang X., Tian G., Zhang Q., Knapp M., Ehrenberg H., Chen G., Shen Z., Yang G., Gu L., Du F. Lithium lanthanum titanate perovskite as an anodefor lithium ion batteries. Nat. Comm., 2020, vol. 11, article no. 3490.
  11. Wang Z., Yang W., Yang J., Zheng L., Sun K., Chen D., Sun L., Liu X. Tuning the crystal and electronic structure of Li4Ti5O12 via Mg/La codopingfor fast and stable lithium storage. Ceram. Int., 2020, vol. 46, pp. 12965–12974.
  12. Zhang Z., Xun R., Wang L., Meng Z. Construction of pseudocapacitive Li2 − xLaxZnTi3O8 anode for fast andsuper-stable lithium storage. Ceram. Int., 2021, vol. 47, pp. 662–669.
  13. Wei G., Rambo C. R., Guo Y., Ning Z., Guo S., Zhao M., Huang Z., Zhang C., He D. Graphene coated La3+/Sc3+ co-doped Li4Ti5O12 anodes for enhanced Li-ion batteryperformance. Materials Letters, 2017, vol. 193, pp. 179–182.
  14. Sovizi M. R., Pourali S. M. Effect of Praseodymium Doping on Structuraland Electrochemical Performance of Lithium Titanate Oxide(Li4Ti5O12) as New Anode Material for Lithium-Sulfur Batteries. Electron. Mater., 2018, vol. 47, pp. 6525–6531.
  15. Zhang Q., Li X. High Rate Capability of Nd-Doped Li4Ti5O12 as an Effective Anode Material for Lithium-Ion Battery. Int. J. Electrochem. Sci., 2013, vol. 8, pp. 7816–7824.