ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Mikhailova A. A., Tuseeva E. K., Naumkin A. V., Pereyaslavtsev A. Y., Zhilov V. I., Khazova O. A. Nanostructure сatalysts, сomposed of сomposites of platinum, ruthenium, polyelectrolytes and nanotubes. Electrochemical Energetics, 2016, vol. 16, iss. 1, pp. 24-29. DOI: 10.18500/1608-4039-2016-16-1-24-29, EDN: YPTGKF

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 110)
Language: 
Russian
Heading: 
Article type: 
Article
EDN: 
YPTGKF

Nanostructure сatalysts, сomposed of сomposites of platinum, ruthenium, polyelectrolytes and nanotubes

Autors: 
Mikhailova Alla Aleksandrovna, Institute of Physical Chemistry and Electrochemistry of A. N. Frumkina of RAS
Tuseeva Elena Konstantinovna, Institute of Physical Chemistry and Electrochemistry of A. N. Frumkina of RAS
Naumkin Aleksandr Vasil'evich, Institute the Elementoorganicheskikh of Connections of A. N. Nesmeyanov of RAS
Pereyaslavtsev Aleksandr Yur'evi, N. L. Duhov Russian Institute of Automatic
Zhilov Valerii Ivanovich, Institute of Physical Chemistry and Electrochemistry of A. N. Frumkina of RAS
Khazova Ol'ga Alekseevna, Institute of Physical Chemistry and Electrochemistry of A. N. Frumkina of RAS
Abstract: 

УДК 541.138

DOI:  https://doi.org/10.18500/1608-4039-2016-16-1-24-29

Electrocatalysts for methanol oxidation was studied. They were prepared on the base of carbon nanotubes, covered by polyelectrolytes with differently charged functional groups, which was changed by platinum with subsequent reduction. Then ruthenium was spontaneous deposited on metal platinum. The prepared catalysts were more active compared to commertial ETEK Pt-Ru (50:50 at. %) catalysts.

Reference: 

1. Decher G. Fuzzy nanoassemblies\,: toward layered polymeric multicomposites. Science, 1997, vol. 277, no. 8, pp. 1232-1237.
2. Wang S., Jiang S. P., Wang X. Polyelectrolyte functionalized carbon nanotubes as a support for noble metal electrocatalysts and their activity for methanol oxidation. Nanotechnology, 2008, vol. 19, pp. 1-6. DOI: 10.1088/0957-4484/19/26/265601.
3. Wang S., Jiang S. P., White T. J., Wang X. Synthesis of Pt and Pd nanosheaths on multi-walled carbon nanotubes as potential electrocatalysts of low temperature fuel cells. Electrochim. Acta, 2010, vol. 55, pp. 7652-7658.
4. Wang S., Yang F., Jiang S.P., Chen S., Wang X.  Tuning the electrocatalytic activity of Pt nanoparticles on carbon nanotubes via surface functionalization. Electrochem. Comm., 2010, vol. 12, pp. 1646-1649.
5. Tian Z. Q., Jiang S. P., Liu Z., Li L. Polyelectrolyte-stabilized Pt nanoparticles as new electrocatalysts for low temperature fuel cells. Electrochem. Comm., 2007, vol. 9, pp. 1613-1618.
6. Wang T. C., Cohen R. E., Rubner M. F. Metallodielectric photonic structures based on polyelectrolyte multilayers. Advanced Materials, 2002, vol. 14, no. 21, pp. 1534-1537.
7. Zhang X., Su Z. Polyelectrolyte-multilayer-supported Au@Ag core-shell nanoparticles with high catalytic activity. Advanced Materials, 2012, vol. 24, pp. 4574-4577. DOI: 10.1002/adma.201201712.
8. Chu C., Su Z. Facile synthesis of AuPt alloy nanoparticles in polyelectrolyte multilayers with enhanced catalytic activity for reduction of 4-nitrophenol. $Langmuir$, 2014, vol. 30(50), pp. 15345-15350. DOI: 10.1021/la5042019.
9. Zan X., Su Z. Incorporation of nanoparticles into polyelectrolyte multilayers via counterion exchange and in situ reduction. Langmuir, 2009, vol. 25 (20), pp. 12355-12360. DOI: 10.1021/la901655m.
10. Wei J., Wang L., Zhang X., Ma X., Wang H., Su Z. Coarsening of silver nanoparticles in polyelectrolyte multilayers. $Langmuir$, 2013, vol. 29, pp. 11413-11419. DOI: 10.1021/la401216c.
11. Tusseeva E. K., Zhigalina V. G., Zigalina O. M., Zhilov V. I., Khazova O. A. Kataliticheskie sloi na osnove kompozitov iz polimernykh materialov, uglerodnykh nanotrubok i adsorbirovannykh chastitz platiny [Catalytic layers on the base of composites from polymer materials, carbon nanotubes and adsorbed platinum particles]. Elektrokhimicheskaya Energetika [Electrochemical Energetics],  2014, vol. 14, no. 1, pp. 26-34. (in Russian).
12. Waszczuk P., Solla-Gullon J., Kim H.-S., Tong Y. Y., Montiel V., Aldaz A., Wieckowski A. Methanol electrooxidation on platinum/ruthenium nanoparticle catalysts. Journal of Catalysis, 2001, vol. 203, pp. 1-6.
13. Tremiliosi-Filho G., Kim H., Chrzanowski W., Wieckowski A., Grzybowska B., Kulesza P. Reactivity and activation parameters in methanol oxidation on platinum single crystal electrodes «decorated» by ruthenium adlayers. Journal of Electroanal. Chem., 1999, vol. 467, pp. 143-156.
14. Mayorova N. A., Tusseeva E. K., Sosenkin V. E., Rychagov A. Yu., Volfkovich Yu. M., Krestinin A. I., Zvereva G. A., Zhigalina O. M., Khazova O. A. The influence of functionalization of carbon nanotubes on structure and catalytic properties of electrodeposited catalysts. Russian Journal of Electrochemistry, 2009, vol. 45, no. 9, pp. 1089-1097.
15. Naumkin V., Kraut-Vass A., Gaarenstroom S. W., Powell C. J. NIST X-ray photoelectron spectroscopy database. Version 4.1 (National Institute of Standards and Technology, Gaithersburg, 2012).
16. Mavrikakis M., Hammer B., Norskov J. K. Effect of strain on the reactivity of metal surfaces. Physical Review Letters, 1998, vol. 81, no. 13, pp. 2819-2822.

Received: 
26.01.2016
Accepted: 
26.01.2016
Published: 
25.02.2016