ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Kazarinov I. A., Meshherjakova M. O., Sverchkova L. V., Oliskevich V. V., Sevostyanov V. P. Modelling of the Wastewater Treatment Process Using Microbial Bioelectrochemical Technologies. Electrochemical Energetics, 2018, vol. 18, iss. 4, pp. 199-?. DOI: 10.18500/1608-4039-2018-18-4-199-210, EDN: ZDQSXB

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 64)
Language: 
Russian
Heading: 
Article type: 
Article
EDN: 
ZDQSXB

Modelling of the Wastewater Treatment Process Using Microbial Bioelectrochemical Technologies

Autors: 
Kazarinov Ivan Alekseevich, Saratov State University
Meshherjakova Marija Olegovna, Saratov State University
Sverchkova Ludmila Valer'evna, Saratov State University
Oliskevich Vladimir Vladimirovich, Research Institute of Organic Technology, Inorganic Chemistry and Biotechnology
Sevostyanov Vladimir Petrovich, Research Institute of Organic Technology, Inorganic Chemistry and Biotechnology
Abstract: 

The wastewater is potential processing facilities, from which you can receive bioenergy and biochemicals. Wastewater treatment using microbial fuel cells (MFC) is one of the strategies of biological treatment of industrial and agricultural wastewater. The purpose of this work is modeling of process of wastewater treatment by means of mediator microbic fuel elements and also assessment of efficiency of microorganisms Escherichia coli used as the biocatalyst in the course of bioelectrochemical oxidation of various substrates (glucose, sucrose and citric acid) in neutral environments.

Reference: 

1. Largus T. Angenent, Khursheed Karim, Muthanna H. Al-Dahhan. Production of bioenergy and biochemicals from industrial and agricultural wastewater. TRENDS in Biotechnology, 2004, vol. 22, no. 9, pp. 478–485.

2. Kazarinov I. A., Meshcheryakova M. O., Karamysheva L. V. Conversion of wastes intoelectrical energy troungh microbial electrochemical technologies. Electrochemical Energetics, 2016, vol. 16, no. 4, pp. 207–225 (in Russian). DOI: https://doi.org/10.18500/1608-4039-2016-16-4-207-225

3. Kazarinov I. A. Vvedenie v biologicheskuju jelektrohimiju [Intoduction to biological electrochemistry]. Saratov, Izd-vo Sarat. un-ta, 2012. 216 p. (in Russian).

4. Katz E., Shipway A. N., Willner I. Handbook of fuel cells – Fundamentals, Technology and Application. Eds. W. Vielstich, H. A. Gasteiger, A. Lamm. London, 2003, vol. 1, 355 p.

5. Shukla A. K., Suresh P., Berchmans S., Rajendran A. Biological fuel cells and their applications. Current Science, 2004, vol. 87, no. 4, pp. 455–468.

6. Davila D., Esquivel J., Vigues N. Development and Optimization of Microbial Fuel Cells. J. New Mater. Electroch. Systems, 2008, vol. 11, pp. 99–103.

7. Miller J. H. Experiments in Molecular Genetics. New York, Cold Spring Harbor Laboratory Press, 1972. 468 p.

8. Naumova M. N., Meshcheryakova M. O., Turkovskaya O. V., Kazarinov I. A. Comparative studying of kinetics of bioelectrochemical oxidation of glucose in neutral enviroments by means of the microorganisms Escherichia coli and Enterobacter cloacae. Electrochemical Energetics, 2015, vol. 15, no.  3, pp. 130–136 (in Russian).

Received: 
20.11.2018
Accepted: 
20.12.2018
Published: 
25.12.2018