For citation:
Cherendina O. V., Laptev E. D., Shubnikova E. V., Tropin E. S., Bragina O. A., Nemudry A. P. Influence of fabrication method on the microstructure of La0.6Sr0.2Ba0.2Fe0.7Co0.2Ni0.1O3 – δ microtubular membranes. Electrochemical Energetics, 2025, vol. 25, iss. 4, pp. 183-188. DOI: 10.18500/1608-4039-2025-25-4-183-188, EDN: HXFLLO
Influence of fabrication method on the microstructure of La0.6Sr0.2Ba0.2Fe0.7Co0.2Ni0.1O3 – δ microtubular membranes
Microtubular membranes with the composition of La0.6Sr0.2Ba0.2Fe0.7Ni0.1Co0.2O3−δ were fabricated using phase inversion and dip- coating methods, followed by sintering in air. The obtained microtubular membranes were characterized by X-ray diffraction analysis and scanning electron microscopy. The optimal sintering temperature was selected taking into account the target application of the microtubular membranes and the corresponding microstructural requirements. The comparative analysis was performed based on the following parameters: inner and outer diameter, shrinkage, and the dimensions of the gas-tight and porous layers.
- Wei Y., Yang W., Caro J., Wang H. Dense ceramic oxygen permeable membranes and catalytic membrane reactors. Chem. Eng. J., 2013, vol. 220, pp. 185– 203. https://doi.org/10.1016/j.cej.2013.01.048
- Tan X., Shi L., Hao G., Meng B., Liu S. La0.7Sr0.3FeO3−α perovskite hollow fiber membranes for oxygen permeation and methane conversion. Sep. Purif. Technol., 2012, vol. 96, pp. 89–97. https://doi.org/10.1016/j.seppur.2012.05.012
- Cherendina O. V., Shubnikova E. V., Khokhlova M. O., Bragina O. A., Nemudry A. P. Dualphase La0.5Sr0.5Fe0.8Co0.2O3−δ–Ce0.8Sm0.2O2−δ hollow fiber membranes for oxygen separation. J. Alloys Compd., 2024, vol. 972, art. 172838. https://doi.org/10.1016/j.jallcom.2023.172838
- Shubnikova E. V., Bragina O. A., Nemudry A. P. Mixed conducting molybdenum doped BSCF materials. J. Ind. Eng. Chem., 2018, vol. 59, pp. 242–250. https://doi.org/10.1016/j.jiec.2017.10.025
- Niftalieva N. V., Shubnikova E. V., Nemudryi A. P. Effect of the technological parameters of phase inversion method on the morphology of microtubular membranes. Chemistry for Substantible Development, 2018, vol. 26, no. 5, pp. 551–556.
- Bragina O. A., Nemudry A. P. Cobalt-free SrFe1−xMoxO3−δ perovskite hollow fiber membranes for oxygen separation. J. Eur. Ceram. Soc., 2023, vol. 43, no. 8, pp. 3421–3426. https://doi.org/10.1016/j.jeurceramsoc.2023.02.021
- Hashim S. M., Mohamed A. R., Bhatia S. Preparation and characterization of La0.6Sr0.4Co0.2Fe0.8O3−δ thin-film membrane on porous support by dip-coating method. J. Sol-Gel Sci. Technol., 2011, vol. 59, no. 3, pp. 505–512. https://doi.org/10.1007/s10971-011-2520-x
- Meng X., Ding W., Jin R., Wang H., Gai Y., Ji F., Ge Y., Xie D. Two-step fabrication of BaCo0.7Fe0.2Nb0.1O3−δ asymmetric oxygen permeable membrane by dip coating. J. Membr. Sci., 2014, vol. 450, pp. 291–298. https://doi.org/10.1016/j.memsci.2013.09.023
- Tan X., Liu Y., Li K. Preparation of LSCF ceramic hollow-fiber membranes for oxygen production by a phase-inversion / sintering technique. Ind. Eng. Chem. Res., 2005, vol. 44, no. 1, pp. 61–66. https://doi.org/10.1021/ie049891l
- Wang Z., Yang N., Meng B., Tan X., Li K. Preparation and oxygen permeation properties of highly asymmetric La0.6Sr0.4Co0.2Fe0.8O3−α perovskite hollow-fiber membranes. Ind. Eng. Chem. Res., 2009, vol. 48, no. 1, pp. 510–516. https://doi.org/10.1021/ie800861q