High-voltage Cathode Material Based on LiCoVO₄ for Lithium-Ion Battery: Development and Research

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).

This paper discusses the prospects for developing a cathode material based on the cobalt(II)-lithium vanadate(V) (LiCoVO4) for a lithium-ion battery, an approach to its preparation and features of the electrochemical behavior.

We obtained LiCoVO4 using solid-phase synthesis technology with preliminary mechanical activation of the mixture of starting materials. The highest specific cathode capacity in the first cycle was demonstrated by the sample obtained by heat treatment at 700°C for 12 hours – 44 mA⋅h⋅g − 1. The reasons for the unattainability of the theoretical level of the specific discharge capacity (148 mA⋅h⋅g − 1) and for its degradation are associated with the features of the crystal structure and the increase in the ohmic resistance at the interface of the electrode material/electrolyte, respectively. The diffusion stages of electrode processes for the extraction of lithium from this material and its reverse insertion are characterized by the values of the diffusion coefficient, moderate for the solid ionic conductors.


1. Wong-Ng W., McMurdie H. F., Paretzkin B., Zhang Y., Davis K. L., Hubbard C. R., Dragoo A. L., Stewart J. M. Reference X-ray diffraction powder patterns of fifteen ceramic phases. Powder Diffr., 1987, vol. 2, pp. 257–265.

2. Leonidova O. N., Voronin V. I., Leonidov I. A., Samigullina R. F., Slobodin B. V. Crystal structures of double vanadates LiCoVO4 and Li0.5Co1.25VO4. J. Struct. Chem., 2004, vol. 44, iss. 2, pp. 277–283.

3. Prakash D., Masuda Y., Sanjeeviraja C. Structural, electrical and electrochemical studies of LiCoVO4 cathode material for lithium rechargeable batteries. Powder Technol., 2013, vol. 235, pp. 454–459.

4. Bernier J. C., Poix P., Michel A. Etude cristallographique et magnetique de deux vanadates mixtes spinelles [Magnetic and crystallographic study of two mixed spinel vanadates]. Bull. Soc. Chim. France, 1963, vol. 1963, pp. 445–446 (in French).

5. Fey G. T.-K., Huang D.-L. Synthesis, characterization and cell performance of inverse spinel electrode materials for lithium secondary batteries. Electrochim. Acta, 1999, vol. 45, no. 1–2, pp. 295–314.

6. Kosova N. V., Vosel S. V., Anufrienko V. F., Vasenin N. T., Devyatkina E. T. Reduction processes in the course of mechanochemical synthesis of Li1 + xV3O8. J. Solid State Chem., 2001, vol. 160, no. 2, pp. 444–449.

7. Bernier C., Poix P., Michel A. Sur deux vanadates mixtes du type spinelle [On two mixed vanadates of the spinel type]. C. R. Hebd. Séances Acad. sci., 1961, vol. 253, pp. 1578 (in French).

8. Fey G. T.-K., Li W., Dahn J. R. LiNiVO4 : a 4.8 volt electrode material for lithium cells. J. Electrochem. Soc., 1994, vol. 141, no. 9, pp. 2279–2282.

9. Fey G. T.-K., Perng W.-B. A new preparation method for a novel high voltage cathode material : LiNiVO4. Mater. Chem. Phys., 1997, vol. 47, no. 2–3, pp. 279–282.

10. Chen W., Mai L. Q., Xu Q., Zhu Q. Y., Yang H. P. Novel soft solution synthesis and characterization of submicromic LiCoVO4. Mater. Sci. Eng., B, 2003, vol. 100, no. 3, pp. 221–224.

11. Van Landschoot N., Kwakernaak C., Sloof W. G., Kelder E. M., Schoonman J. A structural investigation of the influence of dopants on the electronic properties of LiCoVO4. J. Eur. Ceram. Soc., 2005, vol. 25, no. 15, pp. 3469–3477.

12. Thongtem T., Phuruangrat A., Thongtem S. Analyses of nano-crystalline LiCoVO4 prepared by solvothermal reaction. Mater. Lett., 2006, vol. 60, no. 29–30, pp. 3776–3781.

13. Fey G. T.-K., Muralidharan P., Cho Y.-D. Electrochemical studies on surface coated LiCoVO4 with Al2O3 derived from carboxylate-alumoxane for lithium-ion cells. J. Power Sources, 2007, vol. 174, no. 2, pp. 1152–1155.

14. Van Landschoot N., Kelder E. M., Schoonman J. Citric acid-assisted synthesis and characterization of doped LiCoVO4. Solid State Ionics, 2004, vol. 166, no. 3–4, pp. 307–316.

15. Kitajou A., Yoshida J., Nakanishi S., Okada S., Yamaki J. I. Cathode properties of Mn-doped inverse spinels for Li-ion battery. J. Power Sources, 2013, vol. 244, pp. 658–662.

16. Van Landschoot N., Kelder E. M., Kooyman P. J., Kwakernaak C., Schoonman J. Electrochemical performance of Al2O3-coated Fe doped LiCoVO4. J. Power Sources, 2004, vol. 138, no. 1–2, pp. 262–270.

17. Fey G. T. K., Wang K. S., Yang S. M. New inverse spinel cathode materials for rechargeable lithium batteries. J. Power Sources, 1997, vol. 68, no. 1, pp. 159–165.

18. Fey G. T.-K., Wu C.-S. Dopant effects and conductivity studies on a new high voltage cathode material with inverse spinel structure. Pure Appl. Chem., 1997, vol. 69, no. 11, pp. 2329–2334.

19. Nelson J. В., Riley D. P. An experimental investigation of extrapolation methods in the derivation of accurate unit-cell dimensions of crystals. Proc. Phys. Soc., 1945, vol. 57, no. 3, pp. 160–177.

20. Kulova T. L., Skundin A. M. A simple method for diagnosing the causes of electrode degradation during cycling of lithium-ion batteries. Electrochemical Energetics, 2011, vol. 11, no. 4, pp. 171–178 (in Russian).

Full Text (PDF):
(downloads: 288)