ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Kulova T. L., Skundin A. M. From lithium-ion tо sodium-ion batteries. Electrochemical Energetics, 2016, vol. 16, iss. 3, pp. 122-150. DOI: 10.18500/1608-4039-2016-16-3-122-150, EDN: YQYJWJ

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 75)
Language: 
Russian
Article type: 
Article
EDN: 
YQYJWJ

From lithium-ion tо sodium-ion batteries

Autors: 
Kulova Tat'yana L'vovna, Institute of Physical Chemistry and Electrochemistry of A. N. Frumkina of RAS
Skundin Aleksandr Mordukhaevich, Institute of Physical Chemistry and Electrochemistry of A. N. Frumkina of RAS
Abstract: 

УДК 544.6; 621.355

DOI:  https://doi.org/10.18500/1608-4039-2016-16-3-122-150

The current state of researches of sodium – ion batteries is discussed. The main problem constraining creation of competitive sodium – ion batteries, is low efficiency of the available electrode materials. The main efforts on creation of anodes for sodium – ion batteries come down to development of materials based on carbon, metals, alloys and oxides of transitional metals. Materials based on oxide and salt systems are developed for cathodes. Significantly less attention is paid to synthesis of electrolytes for sodium-ion batteries. Now solutions of salt of sodium in organic solvents are used as electrolytes.

Reference: 
  1. Slater M. D., Kim D., Lee E., Johnson Ch. S. Sodium -Ion Batteries. Adv. Funct. Mat., 2013, vol. 23, pp. 947–958.
  2. Doeff M. M., Ma Y., Visco S. J., De Jonghe L. C. Electrochemical Insertion of Sodium into Carbon. J. Electrochem. Soc., 1993, vol. 140, pp. L169–L170.
  3. Delmas C., Fouassier C., Hagenmuller P. Structural classification and properties of the layered oxides. Phys. B + С, 1980, vol. 99, pp. 81–85.
  4. Doeff M. M., Peng M. Y., Ma Y., De Jonghe L. C. Orthorhombic NaxMnO2 as a Cathode Material for Secondary Sodium and Lithium Polymer Batteries. J. Electrochem. Soc., 1994, vol. 141, pp. L145–L147.
  5. Doeff M. M., Richardson T. J., Kepley L. Lithium Insertion Processes of Orthorhombic NaxMnO2 Based Electrode Materials. J. Electrochem. Soc., 1996, vol. 143, pp. 2507–2516.
  6. Sauvage F., Laffont L., Tarascon J.-M., Baudrin E. Study of the Insertion / Deinsertion Mechanism of Sodium into Na0.44MnO2. Inorg. Chem., 2007, vol. 46, pp. 3289–3294.
  7. Hosono E., Saito T., Hoshino J., Okubo M., Saito Y., Nishio -Hamane D., Kudo T., Zhou H. High power Na -ion rechargeable battery with single -crystalline Na0.44MnO2 nanowire electrode. J. Power Sources, 2012, vol. 217, pp. 43–46.
  8. Dai K., Mao J., Song X., Battaglia V., Liu G. Na0.44MnO2 with very fast sodium diffusion and stable cycling synthesized via polyvinylpyrrolidone -combustion method. J. Power Sources, 2015, vol. 285, pp. 161–168.
  9. Qiao R., Dai K., Mao J., Weng T.-C., Sokaras D., Nordlund D., Song X., Battaglia V. S., Hussain Z., Liu G., Yang W. Revealing and suppressing surface Mn(II) formation of Na0.44MnO2 electrodes for Na -ion batteries. Nano Energy, 2015, vol. 16, pp. 186–195.
  10. Zhou X., Guduru R. K., Mohanty P. Synthesis and characterization of Na0.44MnO2 from solution precursors. J. Mater. Chem. A, 2013, vol. 1, pp. 2757–2761.
  11. Zhao L., Ni J., Wang H., Gao L. Na0.44MnO2-CNT electrodes for non -aqueous sodium batteries. RSC Advances, 2013, vol. 3, pp. 6650–6655.
  12. Su D., Wang C., Ahn H.-J., Wang G. Single crystalline Na0.7MnO2 nanoplates as cathode materials for sodium -ion batteries with enhanced performance. Chemistry – A European Journal, 2013, vol. 19, pp. 10884–10889.
  13. Ma X., Chen H., Ceder G. Electrochemical Properties of Monoclinic NaMnO2. J. Electrochem. Soc., 2011, vol. 158, pp. A1307– A1312.
  14. Billaud J., Clement R. J., Armstrong A. R., Canales -Vazquez J., Rozier P., Grey C. P., Bruce P. G. ?-NaMnO2 : A high -per- formance cathode for sodium -ion batteries. J. Amer. Chem. Soc., 2014, vol. 136, pp. 17243–17248.
  15. Guo S., Yu H., Jian Z., Liu P., Zhu Y., Guo X., Chen M., Zhou H. A high -capacity, low -cost layered sodium manganese oxide material as cathode for sodium -ion batteries. ChemSusChem., 2014, vol. 7, pp. 2115–2119.
  16. Meng Y. S., Hinuma Y., Ceder G. An investigation of the sodium patterning in NaxCoO2 (0.5 ? x ? 1) by density functional theory methods. J. Chem. Phys., 2008, vol. 128, art. no. 104708.
  17. Bhide A., Hariharan K. Physicochemical properties of NaxCoO2 as a cathode for solid state sodium battery. Solid State Ionics, 2011, vol. 192, pp. 360–363.
  18. Berthelot R., Carlier D., Delmas C. Electrochemical investigation of the P2-NaxCoO2 phase diagram. Nat. Mater., 2011, vol. 10, pp. 74–80.
  19. D’Arienzo M., Ruffo R., Scotti R., Morazzoni F., Mari C. M., Polizzi S. Layered Na0.71CoO2 : a powerful candidate for viable and high performance Na -batteries. Phys. Chem. Chem. Phys., 2012, vol. 14, pp. 5945–5952.
  20. Shibata T., Kobayashi W., Moritomo Y. Intrinsic rapid Na+ intercalation observed in NaxCoO2 thin film. AIP Adv., 2013, vol. 3, art. no. 032104.
  21. Ding J. J., Zhou Y. N., Sun Q., Yu X. Q., Yang X. Q., Fu Z. W. Electrochemical properties of P2-phase Na0.74CoO2 compounds as cathode material for rechargeable sodium -ion batteries. Electrochim. Acta, 2013, vol. 87, pp. 388–393.
  22. Rai A. K., Anh L. T., Gim J., Mathew V., Kim J. Electrochemical properties of NaxCoO2 (x ? 0.71) cathode for rechargeable sodium -ion batteries. Ceramics Intern., 2014, vol. 40, pp. 2411–2417.
  23. Molenda J., Baster D., Stoklosa A., Gutowska M. U., Szewczyk A., Puzniak R., Dybko K., Szot M., Tobola J. Correlation between electronic and electrochemical properties of NaxCoO2?y. Solid State Ionics, 2014, vol. 268, pp. 179–184.
  24. Baster D., Dybko K., Szot M., Swierczek K., Molenda J. Sodium intercalation in NaxCoO2?y – Correlation between crystal structure, oxygen nonstoichiometry and electrochemical properties. Solid State Ionics, 2014, vol. 262, pp. 206–210.
  25. Braconnier J. J., Delmas C., Hagenmuller P. Etude par desintercalation electrochimique des systemes NaxCrO2 et NaxNiO2. Mat. Res. Bull., 1982, vol. 17, pp. 993–1000.
  26. Vassilaras P., Ma X., Li X., Ceder G. Electrochemical Properties of Monoclinic NaNiO2. J. Electrochem. Soc., 2013, vol. 160, pp. A207–A211.
  27. Han M. H., Gonzalo E., Casas -Cabanas M., Rojo T. Structural evolution and electrochemistry of monoclinic NaNiO2 upon the first cycling process. J. Power Sources, 2014, vol. 258, pp. 266–271.
  28. Yabuuchi N., Yoshida H., Komaba S. Crystal Structures and Electrode Performance of Alpha -NaFeO2 for Rechargeable Sodium Batteries. Electrochem, 2012, vol. 80, pp. 716–719.
  29. Zhao J., Zhao L., Dimov N., Okada S., Nishida T. Electrochemical and Thermal Properties of ?-NaFeO2 Cathode for Na -Ion Batteries. J. Electrochem. Soc., 2013, vol. 160, pp. A3077–A3081.
  30. Didier C., Guignard M., Denage C., Szajwaj O., Ito S., Saadoune I., Darriet J., Delmas C. Electrochemical Na -deintercalation from NaVO2. Electrochem. Solid -State Lett., 2011, vol. 14, pp. A75–A78.
  31. Guignard M., Didier C., Darriet J., Bordet P., Elkaim E., Delmas C. P2-NaxVO2 system as electrodes for batteries and elec- tron -correlated materials. Nature Mater., 2013, vol. 12, pp. 74–80.
  32. Lu Z., Dahn J. R. Can All the Lithium be Removed from T 2 Li2/3[ Ni1/3Mn2/3]O2?. J. Electrochem. Soc., 2001, vol. 148, pp. A710–A715.
  33. Lu Z., Dahn J. R. In Situ X-Ray Diffraction Study of P 2 Na2/3[ Ni1/3Mn2/3]O2. J. Electrochem. Soc., 2001, vol. 148, pp. A1225– A1229.
  34. Wang H., Yang B., Liao X.-Z., Xu J., Yang D., He Y.-S., Ma Z.-F. Electrochemical properties of P2-Na2/3[Ni1/3Mn2/3]O2 cathode material for sodium ion batteries when cycled in different voltage ranges. Electrochim. Acta, 2013, vol. 113, pp. 200–208.
  35. Lee D. H., Xu J., Meng Y. S. An advanced cathode for Na -ion batteries with high rate and excellent structural stability. Phys. Chem. Chem. Phys., 2013, vol. 15, pp. 3304–3312.
  36. Yang D., Liao X.-Z., Shen J., He Y.-S., Ma Z.-F. A flexible and binder -free reduced graphene oxide/Na2/3[Ni1/3Mn2/3]O2 composite electrode for high -performance sodium ion batteries. J. Mater. Chem. A, 2014, vol. 2, pp. 6723–6726.
  37. Komaba S., Yabuuchi N., Nakayama T., Ogata A., Ishikawa T., Nakai I. Study on the reversible electrode reaction of Na1?xNi0.5Mn0.5O2 for a rechargeable sodium -ion battery. Inorg. Chem., 2012, vol. 51, pp. 6211–6220.
  38. Zhao J., Xu J., Lee D. H., Dimov N., Meng Y. S., Ok S. Electrochemical and thermal properties of P2-type Na2/3Fe1/3Mn2/3O2 for Na -ion batteries. J. Power Sources, 2014, vol. 264, pp. 235–239.
  39. Yabuuchi N., Kajiyama M., Iwatate J., Nishikawa H., Hitomi S., Okuyama R., Usui R., Yamada Y., Komaba S. P2-type Nax[Fe1/2Mn1/2]O2 made from earth -abundant elements for rechargeable Na batteries. Nature Materials, 2012, vol. 11, pp. 512–517.
  40. Park K., Han D., Kim H., Chang W.-S., Choi B., Anass B., Lee S. Characterization of a P2-type chelating -agent -assisted Na2/3Fe1/2Mn1/2O2 cathode material for sodium -ion batteries. RSC Adv., 2014, vol. 4, pp. 22798–22802.
  41. Kalluri S., Hau Seng K., Kong Pang W., Guo Z., Chen Z., Liu H.-K., Dou S. X. Electrospun P2-type Na2/3(Fe1/2Mn1/2)O2 hierarchical nanofibers as cathode material for sodium -ion batteries. ACS Appl. Mater. Interfaces, 2014, vol. 6, pp. 8953–8958.
  42. Xu J., Chou S.-L., Wang J.-L., Liu H.-K., Dou S.-X. Layered P2-Na0.66Fe0.5Mn0.5O2 Cathode Material for Rechargeable Sodi- um -Ion Batteries. ChemElectroChem, 2014, vol. 1, pp. 371–374.
  43. Pang W. K., Kalluri S., Peterson V. K., Sharma N., Kimpton J., Johannessen B., Liu H. K., Dou S. X., Guo Z. Interplay between electrochemistry and phase evolution of the P2-type Nax(Fe1/2Mn1/2)O2 cathode for use in sodium -ion batteries. Chem. Mater., 2015, vol. 27, pp. 3150–3158.
  44. Singh G., Lopez Del Amo J. M., Galceran M., Perez-Villar S., Rojo T. Structural evolution during sodium deintercalation/ intercalation in Na2/3[Fe1/2Mn1/2]O2. J. Mater. Chem. A, 2015, vol. 3, pp. 6954–6961.
  45. Carlier D., Cheng J. H., Berthelot R., Guignard M., Yoncheva M., Stoyanova R., Hwang B. J., Delmas C. The P2- Na2/3Co2/3Mn1/3O2 phase : structure, physical properties and electrochemical behavior as positive electrode in sodium battery. Dalton Trans., 2011, vol. 40, pp. 9306–9312.
  46. Bucher N., Hartung S., Gocheva I., Cheah Y. L., Srinivasan M., Hoster H. E. Combustion -synthesized sodium manganese (cobalt) oxides as cathodes for sodium ion batteries. J. Solid State Electrochem., 2013, vol. 17, pp. 1923–1929.
  47. Nghia N. V., Ou P.-W., Hung I.-M. Synthesis and Electrochemical Properties of Sodium Manganese -based Oxide Cathode Material for Sodium -ion Batteries. Electrochim. Acta, 2015, vol. 161, pp. 63–71.
  48. Billaud J., Singh G., Armstrong A. R., Gonzalo E., Roddatis V., Armand M., Rojo T., Bruce P. G. Na0.67Mn1?xMgxO2 (0 ? x ? 0.2) : a high capacity cathode for sodium -ion batteries. Energy Environ. Sci., 2014, vol. 7, pp. 1387–1391.
  49. Buchholz D., Vaalma C., Chagas L. G., Passerini S. Mg -doping for improved long -term cyclability of layered Na -ion cathode materials – the example of P2-type NaxMg0.11Mn0.89O2. J. Power Sources, 2015, vol. 282, pp. 581–585.
  50. Yabuuchi N., Hara R., Kubota K., Paulsen J., Kumakura S., Komaba S. A new electrode material for rechargeable sodium batteries : P2-type Na2/3[Mg0.28Mn0.72]O2 with anomalously high reversible capacity. J. Mater. Chem. A, 2014, vol. 2, pp. 16851–16855.
  51. Han S. C., Lim H., Jeong J., Ahn D., Park W. B., Sohn K.-S., Pyo M. Ca -doped NaxCoO2 for improved cyclability in sodium ion batteries. J. Power Sources, 2015, vol. 277, pp. 9–16.
  52. Matsui M., Mizukoshi F., Imanishi N. Improved cycling performance of P2-type layered sodium cobalt oxide by calcium substitution. J. Power Sources, 2015, vol. 280, pp. 205–209.
  53. Yoshida H., Yabuuchi N., Komaba S. NaFe0.5Co0.5O2 as high energy and power positive electrode for Na -ion batteries. Electrochem. Comm., 2013, vol. 34, pp. 60–63.
  54. Yu H., Guo S., Zhu Y., Ishida M., Zhou H. Novel titanium -based O3-type NaTi0.5Ni0.5O2 as a cathode material for sodium ion batteries. Chem. Comm., 2014, vol. 50, pp. 457–459.
  55. Ma J., Bo S.-H., Wu L., Zhu Y., Grey C. P., Khalifah P. G. Ordered and disordered polymorphs of Na(Ni2/3Sb1/3)O2 : Honey- comb -ordered cathodes for Na -ion batteries. Chem. Mater., 2015, vol. 27, pp. 2387–2399.
  56. Kim D., Lee E., Slater M., Lu W., Rood S., Johnson C. S. Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na -ion battery application. Electrochem. Comm., 2012, vol. 18, pp. 66–69.
  57. Yabuuchi N., Yano M., Yoshida H., Kuze S., Komaba S. Synthesis and Electrode Performance of O3-Type NaFeO2-NaNi1/2Mn1/2O2 Solid Solution for Rechargeable Sodium Batteries. J. Electrochem. Soc., 2013, vol. 160, pp. A3131–A3137.
  58. Yuan D. D., Wang Y. X., Cao Yu. L., Ai X. P., Yang H. X. Improved electrochemical performance of Fe -substituted NaNi0.5Mn0.5O2 cathode materials for sodium -ion batteries. ACS Appl. Mater. Interfaces, 2015, vol. 7, pp. 8585–8591.
  59. Yuan D., Hu X., Qian J., Pei F., Wu F., Mao R., Ai X., Yang H., Cao Y. P2-type Na0.67Mn0.65Fe0.2Ni0.15O2 Cathode Material with High -capacity for Sodium -ion Battery. Electrochim. Acta, 2014, vol. 116, pp. 300–305.
  60. Oh S.-M., Myung S.-T., Yoon C. S., Lu J., Hassoun J., Scrosati B., Amine K., Sun Y.-K. Advanced Na[Ni0.25Fe0.5Mn0.25]O2/C- Fe3O4 sodium -ion batteries using EMS electrolyte for energy storage. Nano Let., 2014, vol. 14. P. 1620–1626.
  61. Sathiya M., Hemalatha K., Ramesha K., Tarascon J.-M., Prakash A. S. Synthesis, structure, and electrochemical properties of the layered sodium insertion cathode material : NaNi1/3Mn1/3Co1/3O2. Chem. Mater., 2012, vol. 24, pp. 1846–1853.
  62. Li Z.-Y., Gao R., Sun L., Hu Z., Liu X. Designing an advanced P2-Na0.67Mn0.65Ni0.2Co0.15O2 layered cathode material for Na -ion batteries. J. Mater. Chem. A, 2015, vol. 3, pp. 16272–16278.
  63. Buchholz D., Moretti A., Kloepsch R., Nowak S., Siozios V., Winter M., Passerini S. Toward Na -ion Batteries–Synthesis and Characterization of a Novel High Capacity Na Ion Intercalation Material. Chem. Mater., 2013, vol. 25, pp. 142–148.
  64. Doubaji S., Philippe B., Saadoune I., Gorgoi M., Gustafsson T., Solhy A., Valvo M., Edstrom K. Passivation Layer and Cathodic Redox Reactions in Sodium -Ion Batteries Probed by HAXPES. ChemSusChem., 2016, vol. 9, pp. 97–108.
  65. Yuan D., He W., Pei F., Wu F., Wu Y., Qian J., Cao Y., Ai X., Yang H. Synthesis and electrochemical behaviors of layered Na0.67[Mn0.65Co0.2Ni0.15]O2 microflakes as a stable cathode material for sodium -ion batteries. J. Mater. Chem. A, 2013, vol. 1, pp. 3895–3899.
  66. Wu X., Guo J., Wang D., Zhong G., McDonald M. J., Yang Y. P2-type Na0.66Ni0.33?xZnxMn0.67O2 as new high -voltage cathode materials for sodium -ion batteries. J. Power Sources, 2015, vol. 281, pp. 18–26.
  67. Vassilaras P., Toumar A. J., Ceder G. Electrochemical properties of NaNi1/3Co1/3Fe1/3O2 as a cathode material for Na -ion batteries. Electrochem. Comm., 2014, vol. 38, pp. 79–81.
  68. Guo H., Wang Y., Han W., Yu Z., Qi X., Sun K., Hu Y.-S., Liu Y., Chen D., Chen L. Na -deficient O3-type cathode material Na0.8[Ni0.3Co0.2Ti0.5]O2 for room -temperature sodium -ion batteries. Electrochim. Acta, 2015, vol. 158, pp. 258–263.
  69. Singh G., Aguesse F., Otaegui L., Goikolea E., Gonzalo E., Segalini J., Rojo T. Electrochemical performance of Na- Fex(Ni0.5Ti0.5)1?xO2 (x = 0.2 and x = 0.4) cathode for sodium -ion battery. J. Power Sources, 2015, vol. 273, pp. 333–339.
  70. Oh S.-M., Myung S.-T., Hassoun J., Scrosati B., Sun Y.-K. Reversible NaFePO4 electrode for sodium secondary batteries. Electrochem. Comm., 2012, vol. 22, pp. 149–152.
  71. Sun A., Beck F. R., Haynes D., Poston Jr. J. A., Narayanan S. R., Kumta P. N., Manivannan A. Synthesis, characterization, and electrochemical studies of chemically synthesized NaFePO4. Mater. Sci. Engineering B, 2012, vol. 177, pp. 1729–1733.
  72. Ong S. P., Chevrier V. L., Hautier G., Jain A., Moore C., Kim S., Ma X., Ceder G. Voltage, stability and diffusion barrier differences between sodium -ion and lithium -ion intercalation materials. Energy Environ. Sci., 2011, vol. 4, pp. 3680–3688.
  73. Prosini P. P., Cento C., Masci A., Carewska M. Sodium extraction from sodium iron phosphate with a Maricite structure. Solid State Ionics, 2014, vol. 263, pp. 1–8.
  74. Kim J., Seo D., Kim H., Park I., Yoo J.-K., Jung S.-K., Park Y.-U., Goddard Iii W. A., Kang K. Unexpected discovery of low -cost maricite NaFePO4 as a high -performance electrode for Na -ion batteries. Energy and Environmental Science, 2015, vol. 8, pp. 540–545.
  75. Moreau P., Guyomard D., Gaubicher J., Boucher F. Structure and stability of sodium intercalated phases in olivine FePO4. Chem. Mater., 2010, vol. 22, pp. 4126–4128.
  76. Trottier J., Hovington P., Brochu F., Rodrigues I., Zaghib K., Mauger A., Julien C. M. NaFePO4 olivine as electrode materials for electrochemical cells. ECS Trans., 2011, vol. 35, pp. 123–128.
  77. Casas -Cabanas M., Roddatis V. V., Saurel D., Kubiak P., Carretero -Gonzalez J., Palomares V., Serras P., Rojo T. Crystal chemistry of Na insertion/deinsertion in FePO4–NaFePO4. J. Mater. Chem., 2012, vol. 22, pp. 17421–17423.
  78. Zhu Y., Xu Y., Liu Y., Luo C., Wang C. Comparison of electrochemical performances of olivine NaFePO4 in sodium -ion batteries and olivine LiFePO4 in lithium -ion batteries. Nanoscale, 2013, vol. 5, pp. 780–787.
  79. Whiteside A., Fisher C. A. J., Parker S. C., Islam M. S. Particle shapes and surface structures of olivine NaFePO4 in comparison to LiFePO4. Phys. Chem. Chem. Phys., 2014, vol. 16, pp. 21788–21794.
  80. Kim H. H., Yu I. H., Kim H. S., Koo H.-J., Whangbo M.-H. On Why the Two Polymorphs of NaFePO4 Exhibit Widely Different Magnetic Structures : Density Functional Analysis. Inorg. Chem., 2015, vol. 54, pp. 4966–4971.
  81. Li C., Miao X., Chu W., Wu P., Tong D. G. Hollow amorphous NaFePO4 nanospheres as a high -capacity and high -rate cathode for sodium -ion batteries. J. Mater. Chem. A, 2015, vol. 3, pp. 8265–8271.
  82. Fernandez -Ropero A. J., Saurel D., Acebedo B., Rojo T., Casas -Cabanas M. Electrochemical characterization of NaFePO4 as positive electrode in aqueous sodium -ion batteries. J. Power Sources, 2015, vol. 291, pp. 40–45.
  83. Nakayama M., Yamada S., Jalem R., Kasuga T. Density functional studies of olivine -type LiFePO4 and NaFePO4 as positive electrode materials for rechargeable lithium and sodium ion batteries. Solid State Ionics, 2016, vol. 286, pp. 40–44.
  84. Lee K. T., Ramesh T. N., Nan F., Botton G., Nazar L. F. Topochemical synthesis of sodium metal phosphate olivines for sodium -ion batteries. Chem. Mater., 2011, vol. 23, pp. 3593–3600.
  85. Plashnitsa L. S., Kobayashi E., Noguchi Y., Okada S., Yamaki J.-I. Performance of NASICON Symmetric Cell with Ionic Liquid Electrolyte. J. Electrochem. Soc., 2010, vol. 157, pp. A536–A543.
  86. Jian Z., Zhao L., Pan H., Hu Y.-S., Li H., Chen W., Chen L. Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries. Electrochem. Comm., 2012, vol. 14, pp. 86–89.
  87. Li G., Jiang D., Wang H., Lan X., Zhong H., Jiang Y. Glucose -assisted synthesis of Na3V2(PO4)3/C composite as an electrode material for high -performance sodium -ion batteries. J. Power Sources, 2014, vol. 265, pp. 325–334.
  88. Du K., Guo H., Hu G., Peng Z., Cao Y. Na3V2(PO4)3 as cathode material for hybrid lithium ion batteries. J. Power Sources, 2013, vol. 223, pp. 284–288.
  89. Wang H., Jiang D., Zhang Y., Li G., Lan X., Zhong H., Zhang Z., Jiang Y. Self -combustion synthesis of Na3V2(PO4)3 nanoparticles coated with carbon shell as cathode materials for sodium -ion batteries. Electrochim. Acta, 2015, vol. 155, pp. 23–28.
  90. Kang J., Baek S., Mathew V., Gim J., Song J., Park H., Chae E., Rai A. K., Kim J. High rate performance of a Na3V2(PO4)3/C cat- hode prepared by pyro -synthesis for sodium -ion batteries. J. Mater. Chem., 2012, vol. 22, pp. 20857–20860.
  91. Duan W., Zhu Z., Li H., Hu Z., Zhang K., Cheng F., Chen J. Na3V2(PO4)3@C core–shell nanocomposites for rechargeable sodium -ion batteries. J. Mater. Chem. A, 2014, vol. 2, pp. 8668–8675.
  92. Yang J., Han D.-W., Jo M. R., Song K., Kim Y.-I., Chou S.-L., Liu H.-K., Kang Y.-M. Na3V2(PO4)3 particles partly embedded in carbon nanofibers with superb kinetics for ultra -high power sodium ion batteries. J. Mater. Chem. A, 2015, vol. 3, pp. 1005–1009.
  93. Barpanda P., Ye T., Nishimura S., Chung S. C., Yamada Y., Okubo M., Zhou H. S., Yamada A. Sodium iron pyrophosphate : A novel 3.0 V iron -based cathode for sodium -ion batteries. Electrochem. Comm., 2012, vol. 24, pp. 116–119.
  94. Barpanda P., Liu G., Ling C. D., Tamaru M., Avdeev M., Chung S. C., Yamada Y., Yamada A. Na2FeP2O7 : A Safe Cathode for Rechargeable Sodium -ion Batteries. Chem. Mater., 2013, vol. 5, pp. 3480–3487.
  95. Kim H., Shakoor R. A., Park C., Lim S. Y., Kim J.-S., Jo Y. N., Cho W., Miyasaka K., Kahraman R., Jung Y., Choi J. W. Na2FeP2O7 as a promising iron -based pyrophosphate cathode for sodium rechargeable batteries : A combined experimental and theoretical study. Adv. Funct. Mater., 2013, vol. 23, pp. 1147–1155.
  96. Chen C.-Y., Matsumoto K., Nohira T., Hagiwara R., Orikasa Y., Uchimoto Y. Pyrophosphate Na2FeP2O7 as a low -cost and high -performance positive electrode material for sodium secondary batteries utilizing an inorganic ionic liquid. J. Power Sources, 2014, vol. 246, pp. 783–787.
  97. Chen C.-Y., Matsumoto K., Nohira T., Ding C., Yamamoto T., Hagiwara R. Charge–discharge behavior of a Na2FeP2O7 positive electrode in anionic liquid electrolyte between 253 and 363 K. Electrochim. Acta, 2014, vol. 133. P 583–588.
  98. Longoni G., Wang J. E., Jung Y. H., Kim D. K., Mari C. M., Ruffo R. The Na2FeP2O7-carbon nanotubes composite as high rate cathode material for sodium ion batteries. J. Power Sources, 2016, vol. 302, pp. 61–69.
  99. Honma T., Ito N., Togashi T., Sato A., Komatsu T. Triclinic Na2?xFe1+x/2P2O7/C glass -ceramics with high current density performance for sodium ion battery. J. Power Sources, 2013, vol. 227, pp. 31–34.
  100. Nose M., Nakayama H., Nobuhara K., Yamaguchi H., Nakanishi S., Iba H. Na4Co3(PO4)2P2O7 : A novel storage material for sodium -ion batteries. J. Power Sources, 2013, vol. 234, pp. 175–179.
  101. Vujkovic M., Mitric M., Mentus S. High -rate intercalation capability of NaTi2(PO4)3/C composite in aqueous lithium and sodium nitrate solutions. J. Power Sources, 2015, vol. 288, pp. 176–186.
  102. Difi S., Saadoune I., Sougrati M. T., Hakkou R., Edstrom K., Lippens P.-E. Mechanisms and Performances of Na1.5Fe0.5Ti1.5(PO4)3/C Composite as Electrode Material for Na -Ion Batteries. J. Phys. Chem. С, 2015. V 119, pp. 25220–25234.
  103. Kim H., Park I., Lee S., Kim H., Park K.-Y., Park Y.-U., Kim H., Kim J., Lim H.-D., Yoon W.-S., Kang K. Understanding the electrochemical mechanism of the new iron -based mixed -phosphate Na4Fe3(PO4)2(P2O7) in a Na rechargeable battery. Chem. Mater., 2013, vol. 25, pp. 3614–3622.
  104. Niu Y., Xu M., Bao S.-J., Li C. M. Porous graphene to encapsulate Na6.24Fe4.88(P2O7)4 as composite cathode materials for Na -ion batteries. Chem. Comm., 2015, vol. 51, pp. 13120–13122.
  105. Barker J., Saidi M. Y., Swoyer J. L. A Sodium -Ion Cell Based on the Fluorophosphate Compound NaVPO4F. Electrochem. Solid -State Lett., 2003, vol. 6, pp. A1–A4.
  106. Barker J., Saidi M. Y., Swoyer J. L. A Comparative Investigation of the Li Insertion Properties of the Novel Fluorophosphate Phases, NaVPO4F and LiVPO4F. J. Electrochem. Soc., 2004, vol. 151, pp. A1670–A1677.
  107. Zhuo H., Wang X., Tang A., Liu Z., Gamboa S., Sebastian P. J. The preparation of NaV1?xCrxPO4F cathode materials for sodium -ion battery. J. Power Sources, 2006, vol. 160, pp. 698–703.
  108. Lu Y., Zhang S., Li Y., Xue L., Xu G., Zhang X. Preparation and characterization of carbon -coated NaVPO4F as cathode material for rechargeable sodium -ion batteries. J. Power Sources, 2014, vol. 247, pp. 770–777.
  109. Ruan Y.-L., Wang K., Song S.-D., Han X., Cheng B.-W. Graphene modified sodium vanadium fluorophosphate as a high voltage cathode material for sodium ion batteries. Electrochim. Acta, 2015, vol. 160, pp. 330–336.
  110. Ellis B. L., Makahnouk W. R. M., Makimura Y., Toghill K., Nazar L. F. A multifunctional 3.5 V iron -based phosphate cathode for rechargeable batteries. Nature Materials, 2007, vol. 6, pp. 749–753.
  111. Recham N., Chotard J.-N., Dupont L., Djellab K., Armand M., Tarascon J.-M. Ionothermal Synthesis of Sodium -Based Fluorophosphate Cathode Materials. J. Electrochem. Soc., 2009, vol. 156, pp. A993–A999.
  112. Ellis B. L., Michael Makahnouk W. R., Rowan -Weetaluktuk W. N., Ryan D. H., Nazar L. F. Crystal structure and electrochemical properties of A2MPO4F fluorophosphates (A = Na, Li; M = Fe, Mn, Co, Ni). Chem Mater., 2010, vol. 22, pp. 1059–1070.
  113. Kawabe Y., Yabuuchi N., Kajiyama M., Fukuhara N., Inamasu T., Okuyama R., Nakai I., Komaba S. Synthesis and electrode performance of carbon coated Na2FePO4F for rechargeable Na batteries. Electrochem. Comm., 2011, vol. 13, pp. 1225–1228.
  114. Kawabe Y., Yabuuchi N., Kajiyama M., Fukuhara N., Inamasu T., Okuyama R., Nakai I., Komaba S. A Comparison of Crystal Structures and Electrode Performance between Na2FePO4F and Na2Fe0.5Mn0.5PO4F Synthesized by Solid -State Method for Rechargeable Na -Ion Batteries. Electrochem, 2012, vol. 80, pp. 80–84.
  115. Tripathi R., Wood S. M., Islam M. S., Nazar L. F. Na -ion mobility in layered Na2FePO4F and olivine Na[Fe,Mn]PO4. Energy Environ. Sci., 2013, vol. 6, pp. 2257–2264.
  116. Yan J., Liu X., Li B. Nano -assembled Na2FePO4F/carbon nanotubemulti -layered cathodes for Na -ion batteries. Electrochem. Comm., 2015, vol. 56, pp. 46–50.
  117. Vidal -Abarca C., Lavela P., Tirado J. L., Chadwick A. V., Alfredsson M., Kelder E. Improving the cyclability of sodium -ion cathodes by selection of electrolyte solvent. J. Power Sources, 2012, vol. 197, pp. 314–318.
  118. Gover R. K. B., Bryan A., Burns P., Barker J. The electrochemical insertion properties of sodium vanadium fluorophosphate, Na3V2(PO4)2F3. Solid State Ionics, 2006, vol. 177, pp. 1495–1500.
  119. Jiang T., Chen G., Li A., Wang C., Wei Y. Sol–gel preparation and electrochemical properties of Na3V2(PO4)2F3/C composite cathode material for lithium ion batteries. J. Alloys and Comp., 2009, vol. 478, pp. 604–607.
  120. Shakoor R. A., Seo D.-H., Kim H., Park Y.-U., Kim J., Kim S.-W., Gwon H., Lee S., Kang K. A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteries. J. Mater. Chem., 2012, vol. 22, pp. 20535–20541.
  121. Chihara K., Kitajou A., Gocheva I. D., Okada S., Yamaki J-I. Cathode properties of Na3M2(PO4)2F3 [M = Ti, Fe, V] for sodium -ion batteries. J. Power Sources, 2013, vol. 227, pp. 80–85.
  122. Song W., Wu Z., Chen J., Lan Q., Zhu Y., Yang Y., Pan C., Hou H., Jing M., Ji X. High -voltage NASICON Sodium Ion Batteries : Merits of Fluorine Insertion. Electrochim. Acta, 2014, vol. 146, pp. 142–150.
  123. Barker J., Gover R. K. B., Burns P., Bryan A. J. Hybrid -Ion. A Lithium -Ion Cell Based on a Sodium Insertion Material. Electrochem. Solid -State Lett., 2006, vol. 9, pp. A190–A192.
  124. Barker J., Gover R. K. B., Burns P., Bryan A. J. Li4/3Ti5/3O4 || Na3V2(PO4)2F3 : An Example of a Hybrid -Ion Cell Using a Non -graphitic Anode. J. Electrochem. Soc., 2007, vol. 154, pp. A882–A887.
  125. Matts I. L., Dacek S., Pietrzak T. K., Malik R., Ceder G. Explaining Performance -Limiting Mechanisms in Fluorophosphate Na -Ion Battery Cathodes through Inactive Transition -Metal Mixing and First -Principles Mobility Calculations. Chem. Mater., 2015, vol. 27, pp. 6008–6015.
  126. Serras P., Palomares V., Goni A., Kubiak P., Rojo T. Electrochemical performance of mixed valence Na3V2O2x(PO4)2F32x/C as cathode for sodium -ion batteries. J. Power Sources, 2013, vol. 241, pp. 56–60.
  127. Sauvage F., Quarez E., Tarascon J.-M., Baudrin E. Crystal structure and electrochemical properties vs. Na+ of the sodium fluorophosphate Na1.5VOPO4F0.5. Solid State Sci., 2001, vol. 8, pp. 1215–1221.
  128. Park Y.-U., Seo D.-H., Kwon H.-S., Kim B., Kim J., Kim H., Kim I., Yoo H.-I., Kang K. A new high -energy cathode for a Na -ion battery with ultrahigh stability. J. Amer. Chem. Soc., 2013, vol. 135, pp. 13870–13878.
  129. Serras P., Palomares V., Kubiak P., Lezama L., Rojo T. Enhanced electrochemical performance of vanadyl (IV) Na3(VO)2(PO4)2F by ex -situ carbon coating. Electrochem. Comm., 2013, vol. 34, pp. 344–347.
  130. Park Y.-U., Seo D.-H., Kim H., Kim J., Lee S., Kim B., Kang K. A family of high -performance cathode materials for Na -ion batteries, Na(VO1?xPO4)2F1+2x (0 ? x ? 1) : Combined first -principles and experimental study. Adv. Func. Mater., 2014, vol. 24, pp. 4603–4614.
  131. Stevens D. A., Dahn J. R. High Capacity Anode Materials for Rechargeable Sodium -Ion Batteries. J. Electrochem. Soc., 2000, vol. 147, pp. 1271–1273.
  132. Stevens D. A., Dahn J. R. The Mechanisms of Lithium and Sodium Insertion in Carbon Materials. J. Electrochem. Soc., 2001, vol. 148, pp. A803–A811.
  133. Alcantara R., Ortiz G. F., Lavela P., Tirado J. L., Stoyanova R., Zhecheva E. EPR, NMR, and electrochemical studies of surface -modified carbon microbeads. Chemistry of Materials, 2006, vol. 18, pp. 2293–2301.
  134. Tsai P.-C., Chung S.-C., Lin S.-K., Yamada A. Ab initio study of sodium intercalation into disordered carbon. J. Mater. Chem. A, 2015, vol. 3, pp. 9763–9768.
  135. Gotoh K., Ishikawa T., Shimadzu S., Yabuuchi N., Komaba S., Takeda K., Goto A., Deguchi K., Ohki S., Hashi K., Shimizu T., Ishida H. NMR study for electrochemically inserted Na in hard carbon electrode of sodium ion battery. J. Power Sources, 2013, vol. 225, pp. 137–140.
  136. Komaba S., Murata W., Ishikawa T., Yabuuchi N., Ozeki T., Nakayama T., Ogata A., Gotoh K., Fujiwara K. Electrochemical Na insertion and solid electrolyte interphase for hard -carbon electrodes and application to Na -ion batteries. Adv. Funct. Mat., 2011, vol. 21, pp. 3859–3867.
  137. Komaba S., Ishikawa T., Yabuuchi N., Murata W., Ito A., Ohsawa Y. Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. ACS Appl. Mater. Interfaces, 2011, vol. 3, pp. 4165–4168.
  138. Zheng P., Liu T., Guo S. Micro -nano structure hard carbon as a high performance anode material for sodium -ion batteries. Scientific Reports, 2016, vol. 6, art. no. 35620.
  139. Ponrouch A., Goni A. R. Rosa Palacin M. High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte. Electrochem. Comm., 2013, vol. 27, pp. 85–88.
  140. Ponrouch A., Palacin M. R. On the high and low temperature performances of Na -ion battery materials : Hard carbon as a case study. Electrochem. Comm., 2015, vol. 54, pp. 51–54.
  141. Bommier C., Luo W., Gao W.-Y., Greaney A., Ma S., Ji X. Predicting capacity of hard carbon anodes in sodium -ion batteries using porosity measurements. Carbon, 2014, vol. 76, pp. 165–174.
  142. Prabakar S. J. R., Jeong J., Pyo M. Nanoporous hard carbon anodes for improved electrochemical performance in sodium ion batteries. Electrochim. Acta, 2015, vol. 161, pp. 23–31.
  143. Thomas P., Billaud D. Electrochemical insertion of sodium into hard carbons. Electrochim. Acta, 2002, vol. 47, pp. 3303–3307.
  144. Kaspar J., Storch M., Schitco C., Riedel R., Graczyk -Zajacz M. SiOC(N)/Hard Carbon Composite Anodes for Na -Ion Batteries : Influence of Morphology on the Electrochemical Properties. J. Electrochem. Soc., 2016, vol. 163, pp. A156–A162.
  145. Bai Y., Wang Z., Wu C., Xu R., Wu F., Liu Y., Li H., Li Y., Lu J., Amine K. Hard carbon originated from polyvinyl chloride nanofibers as high -performance anode material for Na -ion battery. ACS Appl. Mater. Interfaces, 2015, vol. 7, pp. 5598–5604.
  146. Xiao L., Cao Y., Henderson W. A., Sushko M. L., Shao Y., Xiao J., Wang W., Engelhard M. H., Nie Z., Liu J. Hard carbon nanoparticles as high -capacity, high -stability anodic materials for Na -ion batteries. Nano Energy, 2016, vol. 19, pp. 279–288.
  147. Hasegawa G., Kanamori K., Kannari N., Ozaki J.-I., Nakanishi K., Abe T. Hard Carbon Anodes for Na -Ion Batteries : Toward a Practical Use. ChemElectroChem, 2015, vol. 2, pp. 1917–1920.
  148. Zhao J., Zhao L., Chihara K., Okada S., Yamaki J.-I., Matsumoto S., Kuze S., Nakane K. Electrochemical and thermal properties of hard carbon -type anodes for Na -ion batteries. J. Power Sources, 2013, vol. 244, pp. 752–757.
  149. Sun N., Liu H., Xu B. Facile synthesis of high performance hard carbon anode materials for sodium ion batteries. J. Mater. Chem. A, 2015, vol. 3, pp. 20560–20566.
  150. Hong K.-L., Qie L., Zeng R., Yi Z.-Q., Zhang W., Wang D., Yin W., Wu C., Fan Q.-J., Zhang W.-X., Huang Y.-H. Biomass derived hard carbon used as a high performance anode material for sodium ion batteries // J. Mater. Chem. A. 2014, vol. 2, pp. 12733–12738.
  151. Luo W., Bommier C., Jian Z., Li X., Carter R., Vail S., Lu Y., Lee J.-J., Ji X. Low -surface -area hard carbon anode for Na -ion batteries via graphene oxide as a dehydration agent. ACS Appl. Mater. Interfaces, 2015, vol. 7, pp. 2626–2631.
  152. Lv W., Wen F., Xiang J., Zhao J., Li L., Wang L., Liu Z., Tian Y. Peanut shell derived hard carbon as ultralong cycling anodes for lithium and sodium batteries. Electrochim. Acta, 2015, vol. 176, pp. 533–541.
  153. Ding J., Wang H., Li Z., Kohandehghan A., Cui K., Xu Z., Zahiri B., Tan X., Lotfabad E. M., Olsen B. C., Mitlin D. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano, 2013, vol. 7, pp. 11004–11015.
  154. Lotfabad E. M., Ding J., Cui K., Kohandehghan A., Kalisvaart W. P., Hazelton M., Mitlin D. High -Density Sodium and Lithium Ion Battery Anodes from Banana Peels. ACS Nano, 2014, vol. 8, pp. 7115–7129.
  155. Bommier C., Surta T. W., Dolgos M., Ji X. New Mechanistic Insights on Na -Ion Storage in Nongraphitizable Carbon. Nano Let., 2015, vol. 15, pp. 5888–5892.
  156. Li Y., Xu S., Wu X., Yu J., Wang Y., Hu Y.-S., Li H., Chen L., Huang X. Amorphous monodispersed hard carbon micro -spherules derived from biomass as a high performance negative electrode material for sodium -ion batteries. J. Mater. Chem. A, 2015, vol. 3, pp. 71–77.
  157. Wenzel S., Hara T., Janek J., Adelhelm P. Room -temperature sodium -ion batteries : Improving the rate capability of carbon anode materials by templating strategies. Energy and Environmental Science, 2011, vol. 4, pp. 3342–3345.
  158. Irisarri E., Ponrouch A., Palacin M. R. Review–Hard Carbon Negative Electrode Materials for Sodium -Ion Batteries. J. Electroc- hem. Soc., 2015, vol. 162, pp. A2476–A2482.
  159. Tanaike O., Inagaki M. Sodium intercalation into various carbon hosts in 2-methyltetrahydrofuran solution. Synth. Met., 1997, vol. 90, pp. 69–72.
  160. Alcantara R., Jimenez Mateos J. M., Tirado J. L. Negative Electrodes for Lithium- and Sodium -Ion Batteries Obtained by Heat -Treatment of Petroleum Cokes below 1000°C. J. Electrochem. Soc., 2002, vol. 149, pp. A201–A205.
  161. Alcantara R., Jimenez -Mateos J. M., Lavela P., Tirado J. L. Carbon black : a promising electrode material for sodium -ion batteries. Electrochem. Comm., 2001, vol. 3, pp. 639–642.
  162. Chen T., Liu Y., Pan L., Lu T., Yao Y., Sun Zh., Chua D. H. C., Chen Q. Electrospun carbon nanofibers as anode materials for sodium ion batteries with excellent cycle performance. J. Mater. Chem. A, 2014, vol. 2, pp. 4117–4121.
  163. Jin J., Yu B.-J., Shi Z.-Q., Wang C.-Y., Chong C.-B. Lignin -based electrospun carbon nanofibrous webs as free -standing and binder -free electrodes for sodium ion batteries. J. Power Sources, 2014, vol. 272, pp. 800–807.
  164. Jin J., Shi Z.-Q., Wang C.-Y. Electrochemical Performance of Electrospun carbon nanofibers asfree -standing and binder -free anodes for Sodium -Ionand Lithium -Ion Batteries. Electrochim. Acta, 2014, vol. 141, pp. 302–310.
  165. Li W., Zeng L., Yang Z., Gu L., Wang J., Liu X., Cheng J., Yu Y. Free -standing and binder -free sodium -ion electrodes with ultralong cycle life and high rate performance based on porous carbon nanofibers. Nanoscale, 2014, vol. 6, pp. 693–698.
  166. Luo W., Schardt J., Bommier C., Wang B., Razink J., Simonsen J., Ji X. Carbon nanofibers derived from cellulose nanofibers as a long -life anode material for rechargeable sodium -ion batteries. J. Mater. Chem. A, 2013, vol. 1, pp. 10662–10666.
  167. Wang Z., Qie L., Yuan L., Zhang W., Hu X., Huang Y. Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium -ion storage with excellent performance. Carbon, 2013, vol. 55, pp. 328–334.
  168. Fu L., Tang K., Song K., Aken Van P. A., Yu Y., Maier J. Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance. Nanoscale, 2014, vol. 6, pp. 1384–1389.
  169. Wang H.-G., Wu Z., Meng F.-L., Ma D.-L., Huang X.-L., Wang L.-M., Zhang X.-B. Nitrogen -doped porous carbon nanosheets as low -cost, high -performance anode material for sodium -ion batteries. ChemSusChem., 2013, vol. 6, pp. 56–60.
  170. Zhang K., Li X., Liang J., Zhu Y., Hu L., Cheng Q., Guo C., Lin N., Qian Y. Nitrogen -doped porous interconnected double -shelled hollow carbon spheres with high capacity for lithium ion batteries and sodium ion batteries. Electrochim. Acta, 2015, vol. 155, pp. 174–182.
  171. Selvamani V., Ravikumar R., Suryanarayanan V., Velayutham D., Gopukumar S. Garlic peel derived high capacity hierarchical N-doped porous carbon anode for sodium/lithium ion cell // Electrochim. Acta, vol. 190, pp. 337–345.
  172. Yang F., Zhang Zh., Du K., Zhao X., Chen W., Lai Y., Li J. Dopamine derived nitrogen -doped carbon sheets as anode materials for high -performance sodium ion batteries. Carbon, 2015, vol. 91, pp. 88–95.
  173. Tang K., Fu L., White R. J., Yu L., Titirici M.-M., Antonietti M., Maier J. Hollow carbon nanospheres with superior rate capability for sodium -based batteries. Adv. Energy Mat., 2012, vol. 2, pp. 873–877.
  174. Cao Y., Xiao L., Sushko M. L., Wang W., Schwenzer B., Xiao J., Nie Z., Saraf L. V., Yang Z., Liu J. Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Let., 2012, vol. 12, pp. 3783–3787.
  175. Pol V. G., Lee E., Zhou D., Dogan F., Calderon -Moreno J. M., Johnson C. S. Spherical Carbon as a New High -Rate Anode for Sodium -ion Batteries. Electrochim. Acta, 2014, vol. 127, pp. 61–67.
  176. Chen T., Pan L., Lu T., Fu C., Chua D. H. C., Sun Z. Fast synthesis of carbon microspheres via a microwave -assisted reaction for sodium ion batteries. J. Mater. Chem. A, 2014, vol. 2, pp. 1263–1267.
  177. Yamamoto T., Nohira T., Hagiwara R., Fukunaga A., Sakai S., Nitta K., Inazawa S. Charge -discharge behavior of tin ne- gative electrode for a sodium secondary battery using intermediate temperature ionic liquid sodium bis(fluorosulfonyl) amide -potassium bis(fluorosulfonyl)amide. J. Power Sources, 2012, vol. 217, pp. 479–484.
  178. Nam D.-H., Hong K.-S., Lim S.-J., Kim T.-H., Kwon H.-S. Electrochemical properties of electrodeposited Sn anodes for Na -ion batteries. J. Phys. Chem. С, 2014, vol. 118, pp. 20086–20093.
  179. Ellis L. D., Hatchard T. D., Obrovac M. N. Reversible Insertion of Sodium in Tin. J. Electrochem. Soc., 2012, vol. 159, pp. A1801–A1805.
  180. Baggetto L., Ganesh P., Meisner R. P., Unocic R. R., Jumas J.-C., Bridges C. A., Veith G. M. Characterization of sodium ion electrochemical reaction with tin anodes : Experiment and theory. J. Power Sources, 2013, vol. 234, pp. 48–59.
  181. Komaba S., Matsuura Y., Ishikawa T., Yabuuchi N., Murata W., Kuze S. Redox reaction of Sn -polyacrylate electrodes in aprotic Na cell. Electrochem. Comm., 2012, vol. 21, pp. 65–68.
  182. Darwiche A., Marino C., Sougrati M. T., Fraisse B., Stievano L., Monconduit L. Better cycling performances of bulk Sb in Na -ion batteries compared to Li -ion systems : An unexpected electrochemical mechanism. J. Amer. Chem. Soc., 2012, vol. 134, pp. 20805–20811.
  183. Liang L., Xu Y., Wang C., Wen L., Fang Y., Mi Y., Zhou M., Zhao H., Lei Y. Large -scale highly ordered Sb nanorod array anodes with high capacity and rate capability for sodium -ion batteries. Energy and Environmental Science, 2015, vol. 8, pp. 2954–2962.
  184. Saubanere M., Yahia M. B., Lemoigno F., Doublet M.-L. Influence of polymorphism on the electrochemical behavior of MxSb negative electrodes in Li/Na batteries. J. Power Sources, 2015, vol. 280, pp. 695–702.
  185. Bodenes L., Darwiche A., Monconduit L., Martinez H. The Solid Electrolyte Interphase a key parameter of the high performance of Sb in sodium -ion batteries : Comparative X-ray Photoelectron Spectroscopy study of Sb/Na -ion and Sb/Li -ion batteries. J. Power Sources, 2015, vol. 273, pp. 14–24.
  186. He M., Kravchyk K., Walter M., Kovalenko M. V. Monodisperse antimony nanocrystals for high -rate li -ion and na -ion battery anodes : Nano versus bulk. Nano Let., 2014, vol. 14, pp. 1255–1262.
  187. Baggetto L., Ganesh P., Sun C.-N., Meisner R. A., Zawodzinski T. A., Veith G. M. Intrinsic thermodynamic and kinetic properties of Sb electrodes for Li -ion and Na -ion batteries : Experiment and theory. J. Mater. Chem. A, 2013, vol. 1, pp. 7985–7994.
  188. Qian J., Chen Y., Wu L., Cao Y., Ai X., Yang H. High capacity Na -storage and superior cyclability of nanocomposite Sb/C anode for Na -ion batteries. Chem. Comm., 2012, vol. 48, pp. 7070–7072.
  189. Zhu Y., Han X., Xu Y., Liu Y., Zheng S., Xu K., Hu L., Wang C. Electrospun Sb/C fibers for a stable and fast sodium -ion battery anode // ACS Nano, vol. 7, pp. 6378–6386.
  190. Wu L., Hu X., Qian J., Pei F., Wu F., Mao R., Ai X., Yang H., Cao Y. Sb–C nanofibers with long cycle life as an anode material for high -performance sodium -ion batteries. Energy and Environmental Science, 2014, vol. 7, pp. 323–328.
  191. Hou H., Jing M., Yang Y., Zhang Y., Song W., Yang X., Chen J., Chen Q., Ji X. Antimony nanoparticles anchored on interconnected carbon nanofibers networks as advanced anode material for sodium -ion batteries. J. Power Sources, 2015, vol. 284, pp. 227–235.
  192. Hou H., Yang Y., Zhu Y., Jing M., Pan C., Fang L., Song W., Yang X., Ji X. An Electrochemical Study of Sb/Acetylene Black Composite as Anode for Sodium -Ion Batteries. Electrochim. Acta, 2014, vol. 146, pp. 328–334.
  193. Ko Y. N., Kang Y. C. Electrochemical properties of ultrafine Sb nanocrystals embedded in carbon microspheres for use as Na -ion battery anode materials. Chem. Comm., 2014, vol. 50, pp. 12322–12324.
  194. Wang M., Yang Z., Wang J., Li W., Gu L., Yu Y. Sb Nanoparticles Encapsulated in a Reticular Amorphous Carbon Network for Enhanced Sodium Storage. Small., 2015, vol. 11, pp. 5381–5387.
  195. Wu L., Lu H., Xiao L., Ai X., Yang H., Cao Y. Electrochemical properties and morphological evolution of pitaya -like Sb@C microspheres as high -performance anode for sodium ion batteries. J. Mater. Chem. A, 2015, vol. 3, pp. 5708–5713.
  196. Zhang Y., Xie J., Zhu T., Cao G., Zhao X., Zhang S. Activation of electrochemical lithium and sodium storage of nanocrystalline antimony by anchoring on graphene via a facile in situ solvothermal route. J. Power Sources, 2014, vol. 247, pp. 204–212.
  197. Nithya C., Gopukumar S. RGO/nano Sb composite : A high performance anode material for Na+ ion batteries and evidence for the formation of nanoribbons from the nano rGO sheet during galvanostatic cycling. J. Mater. Chem. A, 2014, vol. 2, pp. 10516–10525.
  198. Zhou X., Zhong Y., Yang M., Hu M., Wei J., Zhou Z. Sb nanoparticles decorated N-rich carbon nanosheets as anode materials for sodium ion batteries with superior rate capability and long cycling stability. Chem. Comm., 2014, vol. 50, pp. 12888–12891.
  199. Zhou X., Dai Z., Bao J., Guo Y.-G. Wet milled synthesis of an Sb/MWCNT nanocomposite for improved sodium storage. J. Mater. Chem. A, 2013, vol. 1, pp. 13727–13731.
  200. Fan L., Zhang J., Cui J., Zhu Y., Liang J., Wang L., Qian Y. Electrochemical performance of rod -like Sb–C composite as anodes for Li -ion and Na -ion batteries. J. Mater. Chem. A, 2015, vol. 3, pp. 3276–3280.
  201. Baggetto L., Marszewski M., Gorka J., Jaroniec M., Veith G. M. AlSb thin films as negative electrodes for Li -ion and Na -ion batteries // J. Power Sources, 2013, vol. 243, pp. 699–705.
  202. Baggetto L., Allcorn E., Unocic R. R., Manthiram A., Veith G. M. Mo3Sb7 as a very fast anode material for lithium -ion and sodium -ion batteries. J. Mater. Chem. A, 2013, vol. 1, pp. 11163–11169.
  203. Baggetto L., Carroll K. J., Hah H.-Y., Johnson C. E., Mullins D. R., Unocic R. R., Johnson J. A., Meng Y. S., Veith G. M. Probing the mechanism of sodium ion insertion into copper antimony Cu2Sb anodes. J. Phys. Chem. С, 2014, vol. 118, pp. 7856–7864.
  204. Baggetto L., Hah H.-Y., Johnson C. E., Bridges C. A., Johnson J. A., Veith G. M. The reaction mechanism of FeSb2 as anode for sodium -ion batteries. Phys. Chem. Chem. Phys., 2014, vol. 16, pp. 9538–9545.
  205. Liu J., Yang Z., Wang J., Gu L., Maier J., Yu Y. Three -dimensionally interconnected nickel -antimony intermetallic hollow nanospheres as anode material for high -rate sodium -ion batteries. Nano Energy, 2015, vol. 16, pp. 389–398.
  206. Wu L., Pei F., Mao R., Wu F., Wu Y., Qian J., Cao Y., Ai X., Yang H. SiC–Sb–C nanocomposites as high -capacity and cycling -stable anode for sodium -ion batteries. Electrochim. Acta, 2013, vol. 87, pp. 41–45.
  207. Kim I. T., Allcorn E., Manthiram A. High -performance FeSb -TiC–C nanocomposite anodes for sodium -ion batteries. Phys. Chem. Chem. Phys., 2014, vol. 16, pp. 12884–12889.
  208. Kim I. T., Kim S.-O., Manthiram A. Effect of TiC addition on SnSbeC composite anodes for sodium -ion batteries. J. Power Sources, 2014, vol. 269, pp. 848–854.
  209. Baggetto L., Allcorn E., Manthiram A., Veith G. M. Cu2Sb thin films as anode for Na -ion batteries. Electrochem. Comm., 2013, vol. 27, pp. 168–171.
  210. Nam D.-H., Hong K.-S., Lim S.-J., Kwon H.-S. Electrochemical synthesis of a three -dimensional porous Sb/Cu2Sb anode for Na -ion batteries. J. Power Sources, 2014, vol. 247, pp. 423–427.
  211. Legrain F., Malyi O. I., Manzhos S. Comparative computational study of the energetics of Li, Na, and Mg storage in amorphous and crystalline silicon. Comp. Mater. Sci., 2014, vol. 94, pp. 214–217.1
  212. Ellis L. D., Wilkes B. N., Hatchard T. D., Obrovac M. N. In Situ XRD Study of Silicon, Lead and Bismuth Negative Electrodes in Nonaqueous Sodium Cells. J. Electrochem. Soc., 2014, vol. 161, pp. A416–A421.
  213. Legrain F., Manzhos S. Aluminum doping improves the energetics of lithium, sodium, and magnesium storage in silicon : A first -principles study. J. Power Sources, 2015, vol. 274, pp. 65–70.
  214. Xu Y., Swaans E., Basak S., Zandbergen H. W., Borsa D. M., Mulder F. M. Reversible na -ion uptake in Si nanoparticles. Adv. Energy Mater., 2016, vol. 6, art. no. 1501436.
  215. Baggetto L., Keum J. K., Browning J. F., Veith G. M. Germanium as negative electrode material for sodium -ion batteries. Electrochem. Comm., 2013, vol. 34, pp. 41–44.
  216. Abel P. R. Lin Y.-M., De Souza T., Chou C.-Y., Gupta A., Goodenough J. B., Hwang C. S., Heller A., Mullins C. B. Nanocolumnar germanium thin films as a high -rate sodium -ion battery anode material. J. Phys. Chem. С, 2013, vol. 117, pp. 18885–18890.
  217. Webb S. A., Baggetto L., Bridges C. A., Veith G. M. The electrochemical reactions of pure indium with Li and Na : Anomalous electrolyte decomposition, benefits of FEC additive, phase transitions and electrode performanc. J. Power Sources, 2014, vol. 248, pp. 1105– 1117.
  218. Darwiche A., Dugas R., Fraisse B., Monconduit L. Reinstating lead for high -loaded efficient negative electrode for rechargeable sodium -ion battery. J. Power Sources, 2016, vol. 304, pp. 1–8.
  219. Xiao L., Cao Y., Xiao J., Wang W., Kovarik L., Nie Z., Liu J. High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na -ion battery applications. Chem. Comm., 2012, vol. 48, pp. 3321–3323.
  220. Ji L., Zhou W., Chabot V., Yu A., Xiao X. Reduced Graphene Oxide/Tin -Antimony Nanocomposites as Anode Materials for Advanced Sodium -Ion Batteries. ACS Appl. Mater. Interfaces, 2015, vol. 7, pp. 24895–24901.
  221. Li L., Seng K. H., Li D., Xia Y., Liu H. K., Guo Z. SnSb@carbon nanocable anchored on graphene sheets for sodium ion batteries. Nano Research, 2014, vol. 7, pp. 1466–1476.
  222. Ji L., Gu M., Shao Y., Li X., Engelhard M. H., Arey B. W., Wang W., Nie Z., Xiao J., Wang C., Zhang J.-G., Liu J. Controlling SEI Formation on SnSb -Porous Carbon Nanofibers for Improved Na Ion Storage. Adv. Mater., 2014, vol. 26, pp. 2901–2908.
  223. Darwiche A., Sougrati M. T., Fraisse B., Stievano L., Monconduit L. Facile synthesis and long cycle life of SnSb as negative electrode material for Na -ion batteries. Electrochem. Comm., 2013, vol. 32, pp. 18–21.
  224. Baggetto L., Hah H.-Y., Jumas J.-C., Johnson C. E., Johnson J. A., Keum J. K., Bridges C. A., Veith G. M. The reaction mechanism of SnSb and Sb thin film anodes for Na -ion batteries studied by X-ray diffraction, 119Sn and 121Sb Mossbauer spectroscopies. J. Power Sources, 2014, vol. 267, pp. 329–336.
  225. Su D., Wang C., Ahn H., Wang G. Octahedral tin dioxide nanocrystals as high capacity anode materials for Na -ion batteries. Phys. Chem. Chem. Phys., 2013, vol. 15, pp. 12543–12550.
  226. Bian H., Zhang J., Yuen M.-F., Kang W., Zhan Y., Yu D. Y. W., Xu Z., Li Y. Y. Anodic nanoporous SnO2 grown on Cu foils as superior binder -free Na -ion battery anodes. J. Power Sources, 2016, vol. 307, pp. 634–640.
  227. Su D., Xie X., Wang G. Hierarchical Mesoporous SnO Microspheres as High Capacity Anode Materials for Sodium -Ion Batteries // Chem. Eur. J. 2014, vol. 20, pp. 3192–3197.
  228. Shimizu M., Usui H., Sakaguchi H. Electrochemical Na -insertion/extraction properties of SnO thick -film electrodes prepared by gas -deposition. J. Power Sources, 2014, vol. 248, pp. 378–382.
  229. Lu Y. C., Ma C., Alvarado J., Kidera T., Dimov N., Meng Y. S., Okada S. Electrochemical properties of tin oxide anodes for sodium -ion batteries. J. Power Sources, 2015, vol. 284, pp. 287–295.
  230. Gorka J., Baggetto L., Keum J. K., Mahurin S. M., Mayes R. T., Dai S., Veith G. M. The electrochemical reactions of SnO2 with Li and Na : A study using thin films and mesoporous carbons. J. Power Sources, 2015, vol. 284, pp. 1–9.
  231. Liu Y., Fang X., Ge M., Rong J., Shen C., Zhang A., Enaya H. A., Zhou C. SnO2 coated carbon cloth with surface modification as Na -ion battery anode. Nano Energy, 2015, vol. 16, pp. 399–407.
  232. Cheng Y., Huang J., Li J., Xu Z., Cao L., Ouyang H., Yan J., Qi H. SnO2/super P nanocomposites as anode materials for Na -ion batteries with enhanced electrochemical performance. J. Alloys and Compounds, 2016, vol. 658, pp. 234–240.
  233. Wang Y., Su D., Wang C., Wang G. SnO2@MWCNT nanocomposite as a high capacity anode material for sodium -ion batteries. Electrochem. Comm., 2013, vol. 29, pp. 8–11.
  234. Wang Y.-X., Lim Y.-C., Park M.-S., Chou S.-L., Kim J. H., Liu H.-K., Dou S.-X., Kim Y.-J. Ultrafine SnO2 nanoparticle loading onto reduced graphene oxide as anodes for sodium -ion batteries with superior rate and cycling performances. J. Mater. Chem. A, 2014, vol. 2, pp. 529–534.
  235. Su D., Ahn H.-J., Wang G. SnO2@graphene nanocomposites as anode materials for Na -ion batteries with superior electrochemical performance. Chem. Comm., 2013, vol. 49, pp. 3131–3133.
  236. Zhang Y., Xie J., Zhang S., Zhu P., Cao G., Zhao X. Ultrafine tin oxide on reduced graphene oxide as high -performance anode for sodium -ion batteries. Electrochim. Acta, 2015, vol. 151, pp. 8–15.
  237. Xu Y., Lotfabad E. M., Wang H., Farbod B., Xu Z., Kohandehghan A., Mitlin D. Nanocrystalline anatase TiO2 : a new anode material for rechargeable sodium ion batteries. Chem. Comm. 2013, vol. 49, pp. 8973–8975.
  238. Wu L., Buchholz D., Bresser D., Chagas L. G., Passerini S. Anatase TiO2 nanoparticles for high power sodium -ion anodes. J. Power Sources, 2014, vol. 251, pp. 379–385.
  239. Yan Z., Liu L., Tan J., Zhou Q., Huang Z., Xia D., Shu H., Yang X., Wang X. One -pot synthesis of bicrystalline titanium dioxide spheres with a core–shell structure as anode materials for lithium and sodium ion batteries. J. Power Sources, 2014, vol. 269, pp. 37–45.
  240. Wu L., Bresser D., Buchholz D., Passerini S. Nanocrystalline TiO2(B) as Anode Material for Sodium -Ion Batteries. J. Electrochem. Soc., 2015, vol. 162, pp. A3052–A3058.
  241. Prutsch D., Wilkening M., Hanzu I. Long -Cycle -Life Na -Ion Anodes Based on Amorphous Titania Nanotubes -Interfaces and Diffusion. ACS Appl. Mater. Interfaces, 2015, vol. 7, pp. 25757–25769.
  242. Xiong H., Slater M. D., Balasubramanian M., Johnson C. S., Rajh T. Amorphous TiO2 Nanotube Anode for Rechargeable Sodium Ion Batteries. J. Phys. Chem. Lett., 2011. V. 2, pp. 2560–2565.
  243. Huang J. P., Yuan D. D., Zhang H. Z., Cao Y. L., Li G. R., Yang H. X., Gao X. P. Electrochemical sodium storage of TiO2(B) nanotubes for sodium ion batteries. RSC Adv., 2013, vol. 3, pp. 12593–12597.
  244. Bi Z., Paranthaman M. P., Menchhofer P. A., Dehoff R. R., Bridges C. A., Chi M., Guo B., Sun X.-G., Sheng Dai Self -organized amorphous TiO2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries. J. Power Sources, 2013, vol. 222, pp. 461–466.
  245. Su D., Dou S., Wang G. Anatase TiO2 : Better Anode Material Than Amorphous and Rutile Phases of TiO2 for Na -Ion Batteries. Chem. Mater., 2015, vol. 27, pp. 6022–6029.
  246. Kim K.-T., Ali G., Chung K. Y., Yoon C. S., Yashiro H., Sun Y.-K., Lu J., Amine K., Myung S.-T. Anatase Titania Nanorods as an Intercalation Anode Material for Rechargeable Sodium Batteries. Nano Let., 2014, vol. 14, pp. 416–422.
  247. Liao J.-Y., Luna B. D., Manthiram A. TiO2-B nanowire arrays coated with layered MoS2 nanosheets for lithium and sodium storage. J. Mater. Chem. A, 2016, vol. 4, pp. 801–806.
  248. Usui H., Yoshioka S., Wasada K., Shimizu M., Sakaguchi H. Nb -Doped Rutile TiO2 : a Potential Anode Material for Na -Ion Battery. ACS Applied Materials & Interfaces, 2015, vol. 7, pp. 6567–6573.
  249. Perez -Flores J. C., Baehtz C., Kuhn A., Garcia -Alvarado F. Hollandite -type TiO2 : a new negative electrode material for sodium -ion batteries. J. Mater. Chem. A, 2014, vol. 2, pp. 1825–1833.
  250. Hwang J.-Y., Myung S.-T., Lee J.-H., Abouimrane A., Belharouak I., Sun Y.-K. Ultrafast sodium storage in anatase TiO2 nanoparticles embedded on carbon nanotubes. Nano Energy, 2015, vol. 16, pp. 218–226.
  251. Lee J., Chen Y.-M., Zhu Z., Vogt B. D. Fabrication of Porous Carbon/TiO2 Composites through Polymerization -Induced Phase Separation and Use As an Anode for Na -Ion Batteries. ACS Appl. Mater. Interfaces, 2014, vol. 6, pp. 21011–21018.
  252. Oh S.-M., Hwang J.-Y., Yoon C. S., Lu J., Amine K., Belharouak I., Sun Y.-K. High Electrochemical Performances of Microsphere C-TiO2 Anode for Sodium -Ion Battery. ACS Applied Materials & Interfaces, 2014, vol. 6, pp. 11295–11301.
  253. Jung K.-N., Seong J.-Y., Kim S.-S., Lee G.-J., Lee J.-W. One -dimensional nanofiber architecture of an anatase TiO2–carbon composite with improved sodium storage performance. RSC Adv., 2015, vol. 5, pp. 106252–106257.
  254. Feng J.-M., Dong L., Han Y., Li X.-F., Li D.-J. Facile synthesis of graphene -titanium dioxide nanocomposites as anode materials for Na -ion batteries. Intern. J. Hydrogen Energy, 2016, vol. 41, pp. 355–360.
  255. Doeff M. M., Cabana J., Shirpour M. Titanate Anodes for Sodium Ion Batteries. J. Inorganic and Organometallic Polymers and Materials, 2014, vol. 24, pp. 5–14.
  256. Senguttuvan P., Rousse G., Seznec V., Tarascon J.-M., Palacin M. R. Na2Ti3O7 : Lowest Voltage Ever Reported Oxide Insertion Electrode for Sodium Ion Batteries. Chem. Mater., 2011, vol. 23, pp. 4109–4111.
  257. Zhao L., Qi L., Wang H. Sodium titanate nanotube/graphite, an electric energy storage device using Na+-based organic electrolytes. J. Power Sources, 2013, vol. 242, pp. 597–603.
  258. Rudola A., Saravanan K., Masona C. W., Balaya P. Na2Ti3O7 : an intercalation based anode for sodium -ion battery applications. J. Mater. Chem. A, 2013, vol. 1, pp. 2653–2662.
  259. Pan H., Lu X., Yu X., Hu Y.-S., Li H., Yang X.-Q., Chen L. Sodium storage and transport properties in layered Na2Ti3O7 for room -temperature sodium -ion batteries. Adv. Energy Mater., 2013, vol. 3, pp. 1186–1194.
  260. Wang W., Yu C., Liu Y., Hou J., Zhu H., Jiao S. Single crystalline Na2Ti3O7 rods as an anode material for sodium -ion batteries. RSC Adv., 2013, vol. 3, pp. 1041–1044.
  261. Zou W., Li J., Deng Q., Xue J., Dai X., Zhou A., Li J. Microspherical Na2Ti3O7 prepared by spray -drying method as anode material for sodium -ion battery. Solid State Ionics, 2014, vol. 262, pp. 192–196.
  262. Xu J., Ma C., Balasubramanian M., Meng Y. S. Understanding Na2Ti3O7 as an ultra -low voltage anode material for a Na -ion battery. Chem. Comm., 2014, vol. 50, pp. 12564–12567.
  263. Zhang Y., Guo L., Yang S. Three -dimensional spider -web architecture assembled from Na2Ti3O7 nanotubes as a high performance anode for a sodium -ion battery. Chem. Comm., 2014, vol. 50, pp. 14029–14032.
  264. Rudola A., Sharma N., Balaya P. Introducing a 0.2V sodium -ion battery anode : The Na2Ti3O7 to Na3?xTi3O7 pathway. Electrochem. Comm., 2015, vol. 61, pp. 10–13.
  265. Xie M., Wang K., Chen R., Li L., Wu F. A facile route to synthesize sheet -like Na2Ti3O7 with improved sodium storage properties. Chemical Research in Chinese Universities, 2015, vol. 31, pp. 443–446.
  266. Wang X., Li Y., Gao Y., Wang Z., Chen L. Additive -free sodium titanate nanotube array as advanced electrode for sodium ion batteries. Nano Energy, 2015, vol. 13, pp. 687–692.
  267. Nava -Avendano J., Morales -Garcia A., Ponrouch A., Rousse G., Frontera C., Senguttuvan P., Tarascon J.-M., Arroyo -de Dompablo M. E., Palacin M. R. Taking steps forward in understanding the electrochemical behavior of Na2Ti3O7. J. Mater. Chem. A, 2015, vol. 3, pp. 22280–22286.
  268. Yan Z., Liu L., Shu H., Yang X., Wang H., Tan J., Zhou Q., Huang Z., Wang X. A tightly integrated sodium titanate -carbon composite as an anode material for rechargeable sodium ion batteries. J. Power Sources, 2015, vol. 274, pp. 8–14.
  269. Zarrabeitia M., Castillo -Martineza E., Del Amo J. M. L., Eguia -Barrio A., Munoz -Marquez M. A., Rojo T., Casas -Cabanas M. Identification of the critical synthesis parameters for enhanced cycling stability of Na -ion anode material Na2Ti3O7. Acta Materialia, 2016, vol. 104, pp. 125–130.
  270. Mukherjee S., Bates A., Schuppert N., Son B., Kim J. G., Choi J. S., Choi M. J., Lee D.-H., Kwon O., Jasinski J., Park S. A study of a novel Na ion battery and its anodic degradation using sodium rich prussian blue cathode coupled with different titanium based oxide anodes. J. Power Sources, 2015, vol. 286, pp. 276–289.
  271. Munoz -Marquez M. A., Zarrabeitia M., Castillo -Martinez E., Eguia -Barrio A., Rojo T., Casas -Cabanas M. Composition and Evolution of the Solid -Electrolyte Interphase in Na2Ti3O7 Electrodes for Na -Ion Batteries : XPS and Auger Parameter Analysis. ACS Applied Materials & Interfaces, 2015, vol. 7, pp. 7801–7808.
  272. Wang S., Wang W., Zhan P., Yuan Y., Jiao K., Jiao H., Jiao S. 3D flower -like NaHTi3O7 nanotubes as high -performance anodes for sodium -ion batteries. J. Mater. Chem. A, 2015, vol. 3, pp. 16528–16534.
  273. Yang C.-J., Chao L.-S., Lu F.-H. Synthesis and electrochemical behaviors of nano -network NaHTi3O7 thin films on Ti/Si prepared by a hydrothermal -galvanic couple method. Surface and Coatings Technology, 2013, vol. 231, pp. 521–525.
  274. Wu D., Li X., Xu B., Twu N., Liu L., Ceder G. NaTiO2 : a layered anode material for sodium -ion batteries. Energy and Environmental Science, 2015, vol. 8, pp. 195–202.
  275. Kataoka K., Akimoto J. Synthesis and electrochemical sodium and lithium insertion properties of sodium titanium oxide with the tunnel type structure. J. Power Sources, 2016, vol. 305, pp. 151–155.
  276. Zhang Y., Hou H., Yang X., Chen J., Jing M., Wu Z., Jia X., Ji X. Sodium titanate cuboid as advanced anode material for sodium ion batteries. J. Power Sources, 2016, vol. 305, pp. 200–208.
  277. Cabello M., Ortiz G. F., Lopez M. C., Alcantara R., Gonzalez J. R., Tirado J. L., Stoyanova R., Zhecheva E. Self -organized sodium titanate/titania nanoforest for the negative electrode of sodium -ion microbatteries. J. Alloys and Compounds, 2015, vol. 646, pp. 816– 826.
  278. Liu C., Liang J.-Y., Han R.-R., Wang Y.-Z., Zhao J., Huang Q.-J., Chen J., Hou W.-H. S-doped Na2Ti6O13@TiO2 core–shell nanorods with enhanced visible light photocatalytic performance. Phys. Chem. Chem. Phys., 2015, vol. 17, pp. 15165–15172.
  279. Shen K., Wagemaker M. Na2+xTi6O13 as Potential Negative Electrode Material for Na -Ion Batteries. Inorganic Chemistry, 2014, vol. 53, pp. 8250–8256.
  280. Liao J.-Y., Manthiram A. High -performance Na2Ti2O5 nanowire arrays coated with VS2 nanosheets for sodium -ion storage. Nano Energy, 2015, vol. 18, pp. 20–27.
  281. Naeyaer P. J. P., Avdeev M., Sharma N., Yahia H. B., Ling C. D. Synthetic, Structural, and Electrochemical Study of Monoclinic Na4Ti5O12 as a Sodium -Ion Battery Anode Material. Chem. Mater., 2014, vol. 26, pp. 7067–7072.
  282. Hou J., Song J., Niu Y., Cheng C., He H., Li Y., Xu M. Carbon -coated P2-type Na0.67Ni0.33Ti0.67O2 as an anode material for sodium ion batteries. J. Solid State Electrochem., 2015, vol. 19, pp. 1827–1831.
  283. Wang Y., Yu X., Xu S., Bai J., Xiao R., Hu Y.-S., Li H., Yang X.-Q., Chen L., Huang X. A zero -strain layered metal oxide as the negative electrode for long -life sodium -ion batteries. Nature Communications, 2013, vol. 4. article no. 2365.
  284. Wang J., Qiu B., He X., Risthaus T., Liu H., Stan M. C., Schulze S., Xia Y., Liu Z., Winter M., Li J. Low -Cost Orthorhombic Nax[FeTi]O4 (x = 1 and 4/3) Compounds as Anode Materials for Sodium -Ion Batteries. Chem. Mater., 2015, vol. 27, pp. 4374–4379.
  285. Shirpour M., Cabana J., Doeff M. Lepidocrocite -type Layered Titanate Structures : New Lithium and Sodium Ion Intercalation Anode Materials. Chem. Mater., 2014, vol. 26, pp. 2502–2512.
  286. Hou J., Niu Y., Li W., Yi F., Liu S., Li Y., Xu M. Na0.56Ti1.72Fe0.28O4 : a novel anode material for Na -ion batteries. RSC Advances, 2015, vol. 5, pp. 88556–88559.
  287. Shirpour M., Cabana J., Doeff M. New materials based on a layered sodium titanate for dual electrochemical Na and Li intercalation systems. Energy Environ. Sci., 2013, vol. 6, pp. 2538–2540.
  288. Yin J., Qi L., Wang H. Sodium Titanate Nanotubes as Negative Electrode Materials for Sodium -Ion Capacitors. ACS Applied Materials & Interfaces, 2012, vol. 4, pp. 2762–2768.
  289. Liu J., Banis N. M., Xiao B., Sun Q., Lushington A., Li R., Guo J., Sham T.-K., Sun X. Atomically precise growth of sodium titanates as anode materials for high -rate and ultralong cycle -life sodium -ion batteries. J. Mater. Chem. A, 2015, vol. 3, pp. 24281–24288.
  290. Wen J.-W., Zhang D.-W., Zang Y., Sun X., Cheng B., Ding C.-X., Yu Y., Chen C.-H. Li and Na storage behavior of bowl -like hollow Co3O4 microspheres as an anode material for lithium -ion and sodium -ion batteries. Electrochim. Acta, 2014, vol. 132, pp. 193–199.
  291. Jian Z., Liu P., Li F., Chen M., Zhou H. Monodispersed hierarchical Co3O4 spheres intertwined with carbon nanotubes for use as anode materials in sodium -ion batteries. J. Mater. Chem. A, 2014, vol. 2, pp. 13805–13809.
  292. Rahman M. M., Glushenkov A. M., Ramireddy T., Chen Y. Electrochemical investigation of sodium reactivity with nanostructured Co3O4 for sodium -ion batteries. Chem. Comm., 2014, vol. 50, pp. 5057–5060.
  293. Liu Y., Cheng Z., Sun H., Arandiyan H., Li J., Ahmad M. Mesoporous Co3O4 sheets/3D graphene networks nanohybrids for high -performance sodium -ion battery anode. J. Power Sources, 2015, vol. 273, pp. 878–884.
  294. Rahman M. M., Sultana I., Chen Z., Srikanth M., Li L. H., Dai X. J., Chen Y. Ex situ electrochemical sodiation/desodiation observation of Co3O4 anchored carbon nanotubes : a high performance sodium -ion battery anode produced by pulsed plasma in a liquid. Nanoscale, 2015, vol. 7, pp. 13088–13095.
  295. Klavetter K. C., Garcia S., Dahal N., Snider J. L., Souza J. P. de, Cell T. H., Cassara M. A., Heller A., Humphrey S. M., Mullins C. B. Li- and Na -reduction products of meso -Co3O4 form high -rate, stably cycling battery anode materials. J. Mater. Chem. A, 2014, vol. 2, pp. 14209–14221.
  296. Alcantara R., Jaraba M., Lavela P., Tirado J. L. NiCo2O4 Spinel : First Report on a Transition Metal Oxide for the Negative Electrode of Sodium -Ion Batteries. Chem. Mater., 2002, vol. 14, pp. 2847–2848.
  297. Thissen A., Ensling D., Madrigal F. J. F., Jaegermann W., Alcantara R., Lavela P., Tirado J. L. Photoelectron Spectroscopic Study of the Reaction of Li and Na with NiCo2O4. Chem. Mater., 2005, vol. 17, pp. 5202–5208.
  298. Chadwick A. V., Savin S. L. P., Fiddy S., Alcantara R., Lisbona D. F., Lavela P., Ortiz G. F., Tirado J. L. Formation and Oxidation of Nanosized Metal Particles by Electrochemical Reaction of Li and Na with NiCo2O4 : X-ray Absorption Spectroscopic Study. J. Phys. Chem. С, 2007, vol. 111, pp. 4636–4642.
  299. Zhou K., Hong Z., Xie C., Dai H., Huang Z. Mesoporous NiCo2O4 nanosheets with enhance sodium ion storage properties. J. Alloys and Compounds, 2015, vol. 651, pp. 24–28.
  300. Wu X., Wu W., Wang K., Chen W., He D. Synthesis and electrochemical performance of flower -like MnCo2O4 as an anode material for sodium ion batteries. Mater. Lett., 2015, vol. 147, pp. 85–87.
  301. Wang L., Zhang K., Hu Z., Duan W., Cheng F., Chen J. Porous CuO nanowires as the anode of rechargeable Na -ion batteries. Nano Research, 2014, vol. 7, pp. 199–208.
  302. Yuan S., Huang X.-L., Ma D.-L., Wang H.-G., Meng F.-Z., Zhang X.-B. Engraving copper foil to give large -scale binder -free porous CuO arrays for a high -performance sodium -ion battery anode. Adv. Mater., 2014, vol. 26, pp. 2273–2279.
  303. Zhang L., Wang Y., Xie D., Tang Y., Wu C., Cui L., Li Y., Ning X., Shan Z. In situ transmission electron microscopy study of the electrochemical sodiation process for a single CuO nanowire electrode. RSC Adv., 2016, vol. 6, pp. 11441–11445.
  304. Sun W., Rui X., Zhu J., Yu L., Zhang Y., Xu Z., Madhavi S., Yan Q. Ultrathin nickel oxide nanosheets for enhanced sodium and lithium storage. J. Power Sources, 2015, vol. 274, pp. 755–761.
  305. Hamani D., Ati M., Tarascon J.-M., Rozier P. NaxVO2 as possible electrode for Na -ion batteries. Electrochem. Comm., 2011, vol. 13, pp. 938–941.
  306. Venkatesh G., Pralong V., Lebedev O. I., Caignaert V., Bazin P., Raveau B. Amorphous sodium vanadate Na1.5+yVO3, a promising matrix for reversible sodium intercalation. Electrochem. Comm., 2014, vol. 40, pp. 100–102.
  307. Muller -Bouvet D., Baddour -Hadjean R., Tanabe M., Huynh L. T. N., Le M. L. P., Pereira -Ramos J. P. Electrochemically formed ?’-NaV2O5 : A new sodium intercalation compound. Electrochim. Acta, 2015, vol. 176, pp. 586–593.
  308. Liu P., Zhou D., Zhu K., Wu Q., Wang Y., Tai G., Zhang W., Gu Q. Bundle -like ?'-NaV2O5 mesocrystals : from synthesis, growth mechanism to analysis of Na -ion intercalation/deintercalation abilities. Nanoscale, 2016, vol. 8, pp. 1975–1985.
  309. Liang L., Xu Y., Wang X., Wang C., Zhou M., Fu Q., Wu M., Lei Y. Intertwined Cu3V2O7(OH)2 · 2H2O nanowires/carbon fibers composite : A new anode with high rate capability for sodium -ion batteries. J. Power Sources, 2015, vol. 294, pp. 193–200.
  310. Hartung S., Bucher N., Chen H.-Y., Al -Oweini R., Sreejith S., Borah P., Yanli Z., Kortz U., Stimming U., Hoster H. E., Srinivasan M. Vanadium -based polyoxometalate as new material for sodium -ion battery anodes. J. Power Sources, 2015, vol. 288, pp. 270– 277.
Received: 
19.09.2016
Accepted: 
19.09.2016
Published: 
30.11.2016