ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)

For citation:

Godyaeva M. V., Kazarinov I. A., Voronkov D. E., Oliskevich V. V., Ostroumov I. G. Flow batteries based on organic redox-systems for large-scale electric energy storage. Electrochemical Energetics, 2021, vol. 21, iss. 2, pp. 59-85. DOI: 10.18500/1608-4039-2021-21-2-59-85, EDN: CAGJVU

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 56)
Article type: 

Flow batteries based on organic redox-systems for large-scale electric energy storage

Godyaeva Mariia Vasil'evna, Saratov State University
Kazarinov Ivan Alekseevich, Saratov State University
Voronkov Danila Evgen'evich, Saratov State University
Oliskevich Vladimir Vladimirovich, Research Institute of Organic Technology, Inorganic Chemistry and Biotechnology
Ostroumov Igor Gennad'evich, Research Institute of Organic Technology, Inorganic Chemistry and Biotechnology

Redox flow battery technology has been known since the 1970s. Their low specific characteristics have been of interest for a long time. Practical interest has arisen in recent decades because of the intensive development of alternative energy (such as solar and wind) and the regulation of peak loads in industrial networks. It turned out that large-scale energy storage systems used for compensation of fluctuations in the generation of energy by the sun and the wind, while producing electric vehicles and power supply systems for large households, are more profitable when they work on flow redox batteries. Firstly, they are easily scalable, and secondly, the energy stored in such batteries is cheap.

Since the expansion of the scope of practical use of flow batteries has taken place in recent years, researchers continue to work on increasing the economic efficiency of flow batteries and on the search for more efficient redox systems. One of these areas is the use of cheaper redox systems of organic nature, in particular, quinone, anthraquinone and their analogs. Their high water solubility, well-separated oxidation-reduction potentials, which practically eliminate water splitting, their stability, safety, and low cost on a scale of mass production are the most important characteristics for new aqueous organic electrolytes.

So far, organic redox flow batteries are still inferior to vanadium and other inorganic redox batteries in terms of their operational parameters. This drawback hinders their development on industrial scale. However, the results shown in this review can help scientists to improve them and commercialize in the future.


1. Obama B. The irreversible momentum of clean energy. Science, 2017, vol. 355, pp. 126–129.

2. Huskinson B., Rugolo J., Mondal S. K., Aziz M. J. A high power density, high efficiency hydrogen–chlorine regenerative fuel cell with a low precious metalcontent catalyst. Energy Environ, 2012, vol. 5, pp. 8690–8698.

3. Skyllas-Kazacos M., Chakrabarti M. H., Hajimolana S. A., Mjalli F. S., Saleem M. Progress in Flow Battery Research and Development. Journal of the Electrochemical Society, 2011, vol. 158, no. 8, pp. 55–79.

4. Zhou L., Zhao T. S., An L., Zeng Y. K., Zhu X. B. Performance of a vanadium redox flow battery with a VANADion membrane. Applied Energy, 2016, vol. 180, no. 15, pp. 353–359.

5. Zeng Y. H., Zhao T. S., Zhou X. L., Zeng L., Wei L. The effects of design parameters on the charge-discharge performance of iron-chromium redox flow batteries. Applied Energy, 2016, vol. 182, no. 15, pp. 204209.

6. Yang J. H., Yang H. S., Ra H. W., Shim J., Jeon J. Effect of a surface active agent on performance of zinc / bromine redox flow batteries : Improvement in current efficiency and system stability. Journal of Power Sources, 2015, vol. 275, pp. 294–297.

7. Skyllas-Kazacos M., Rychcik M., Robins R. G., Fane A. G., Green M. A. New All Vanadium Redox Flow Cell. Journal of the Electrochemical Society, 1986, vol. 133, no. 5, pp. 1057.

8. Rychcik M., Skyllas-Kazacos M. Characteristics of a new all-vanadium redox flow battery. Journal of Power Sources, 1988, vol. 22, pp. 59–67.

9. Kazacos M., Cheng M., Skyllas-Kazacos M. Vanadium redox cell electrolyte optimization studies. Journal of Applied Electrochemistry, 1990, vol. 20, pp. 463–467.

10. Kazacos M., Skyllas-Kazacos M. Performance Characteristics of Carbon Plastic Electrodes in the All Vanadium Redox Cell. Journal of the Electrochemical Society, 1989, vol. 136, no. 9, pp. 2759–2760.

11. Shah A. A., Al-Fetlawi H., Walsh F. C. Modelling the effects of oxygen evolution in the all-vanadium redox flow battery. Electrochimica Acta, 2010, vol. 55, pp. 3192–3205.

12. Zeng Y. K., Zhao T. S., Zhou X. L., Zou J., Ren Y. H. A hydrogen-ferric ion rebalance cell operating at low hydrogen concentrations for capacity restoration of ironchromium redox flow batteries. Journal of Power Sources, 2017, vol. 352, pp. 77–82.

13. Leung P., Li X., Ponce de Leon C., Berlouis L., John Low C. T., Walsh F. C. Progress in redox flow batteries, remaining challenges and their applications in energy storage. RSC Advances, 2012, vol. 2, no. 27, pp. 10125–10156.

14. Wu M. C., Zhao T. S., Wei L., Jiang H. R., Zhang R. H. Improved electrolyte for zinc-bromine flow batteries. Journal of Power Sources, 2018, vol. 384, pp. 232–239.

15. Xu Y., Wen Y., Chenga J., Yanga Y., Xie Z., Cao G. Novel organic redox flow batteries using soluble quinonoid compounds as positive materials. Non-Grid-Connected Wind Power and Energy Conference, IEEE Publication, 2009, vol. 13, pp. 24–26.

16. Huskinson B., Marshak M. P., Aziz M. J., Suh C., Er S., Gerhardt M. R., Galvin C. J., Chen X. A metal-free organic–inorganic aqueous flow battery. LETTER, 2014, vol. 505, no. 7482, pp. 195–198.

17. Perry M. L., Darling R. M., Zaffou R. High Power Density Redox Flow Battery Cells. ECS Transactions, 2013, vol. 53, no. 7, pp. 7–16.

18. Song Y., Buettner G. R. Thermodynamic and kinetic considerations for the reaction of semiquinone radicals to form superoxide and hydrogen peroxide. Free Radical Biology & Medicine, 2010, vol. 49, no. 6, pp. 919–962.

19. Chen Q., Gerhardt M., Hartle L., Aziz M. J. A Quinone-bromide Flow Battery with 1 W/cm2 Power Density. Journal of the Electrochemical Society, 2016, vol. 163, no. 1, pp. 5010–5019.

20. Lin K., Chen Q., Gerhardt M., Tong L., Kim S., Eisenach L., Valle A. Alkaline quinone flow battery. Science, 2015, vol. 349, no. 6255, pp. 1529–1532.

21. Yang Z., Tong L., Tabor D., Beh E., Goulet M., Aziz M., Gordon R. Alkaline Benzoquinone Aqueous Flow Battery for Large-Scale Storage of Electrical Energy. Science Advances News, 2017, vol. 8, no. 8, pp. 817.

22. Leung P., Shah A. A., Sanz L., Flox C., Morante J. R., Xu Q., Mohamed M. R. Recent developments in organic redox flow batteries : A critical review. Journal of Power Sources, 2017, vol. 360, pp. 243–283.

23. Kwabi D. G., Ji Y., Aziz M. J. Electrolyte Lifetime in Aqueous Organic Redox Flow Batteries: A Critical Review. Chemical Reviews, 2020, vol. 120, no. 14, pp. 6467–6489.

24. Yang B., Hoober-Burkhardt L. E., Wang F., Surya Prakash G. K., Narayanan S. R. An Inexpensive Aqueous Flow Battery for Large-Scale Electrical Energy Storage Based on Water-Soluble Organic Redox Couples. Journal of the Electrochemical Society, 2014, vol. 161, no. 9, pp. 1371–1380.

25. Aspuru-Guzik A., Er S., Suh C., Marshak M., Aspuru-Guzik A. Computational design of molecules for an all-quinone redox flow. Chemical Science, 2015, vol. 6, pp. 885–893.

26. Yang B., Hoober-Burkhardt L. E., Krishnamoorthy S., Murali A., Surya Prakash G. K., Narayanan S. R. High-Performance Aqueous Organic Flow Battery with Quinone-Based Redox Couples at Both Electrodes. Journal of the Electrochemical Society, 2016, vol. 163, no. 7, pp. 1442–1449.

27. Potash R. A., McKone J. R., Conte S., Abruna H. D. On the benefits of a symmetric redox flow battery. Journal of the Electrochemical Society, 2016, vol. 163, no. 3, pp. 338–344.

28. Suga T., Sugita S., Ohshiro H., Oyaizu K., Nishide H. p- and n-Type bipolar redox-active radical polymer : Toward totally organic polymer-based rechargeable devices with variable configuration. Advanced Materials, 2011, vol. 23, no. 6, pp. 751–754.

29. Gao H., Goodenough J. B. An aqueous symmetric sodium-ion battery with NASICON-structured Na3MnTi(PO4)3. Angewandte Chemie International Edition, 2016, vol. 128, no. 41, pp. 12960–12964.

30. Ma T., Pan Z., Miao L., Chen C., Han M., Shang Z., Chen J. Porphyrin-based symmetric redox-flow batteries towards coldclimate energy storage. Angewandte Chemie International Edition, 2018, vol. 130, no. 12, pp. 3212–3216.

31. Tong L., Jing Y., Gordon R., Aziz M. J. Symmetric All-Quinone Aqueous Battery. ACS Applied Energy Materials, 2019, vol. 2, pp. 4016–4021.

32. Ji Y., Goulet M-A., Pollack D. A., Kwabi D. G., Jin S., Porcellinis D., Kerr E. F., Gordon R. G., Aziz M. J. A phosphonatefunctionalized quinone redox flow battery at near-neutral pH with record capacity retention rate. Advanced Energy Materials, 2019, vol. 9, no. 12, pp. 1900039.

33. Gerhardt M. R., Tong L., Gomez-Bombarelli R., Chen Q., Marshak M. P., Galvin C. J., Aspuru-Guzik A., Gordon R. G., Aziz M. J. Anthraquinone derivatives in aqueous flow batteries. Advanced Energy Materials, 2017, vol. 7, no. 8, pp. 1601488.

34. Kwabi D. G., Lin K., Ji Y., Kerr E. F., Goulet M.-A., De Porcellinis D., Tabor D. P., Pollack D. A., Aspuru-Guzik A., Gordon R. G., Aziz M. J. Alkaline quinone flow battery with long lifetime at pH 12. Joule, 2018, vol. 2, no. 9, pp. 1894–1906.

35. Bien H. S., Stawitz J., Wunderlich K. Anthraquinone Dyes and Intermediates. In: Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim, Wiley-VCH, 2012, vol. 3, pp. 514–573.

36. Carretero-Gonzalez J., Castillo-Mart??nez E., Armand M. Highly water-soluble three-redox state organic dyes as bifunctional analytes. Energy & Environmental Science, 2016, vol. 9, no. 11, pp. 3521–3530.

37. Yamamoto N., Kubozono T., Kinoshita Y. Mechanism for oxidative decomposition of anthraquinone dye with hydrogen peroxide. Journal of Oleo Science, 2011, vol. 50, no. 6, pp. 507–513.