For citation:
Vinogradov K. Y., Davydov V. M., Tokranova E. O., Shafigulin R. V., Vostrikov S. V., Bulanova A. V. Catalysts for oxygen electroreduction in alkaline medium based on carbon nanotubes modified with urea and phthalocyanines of iron, cobalt and palladium. Electrochemical Energetics, 2025, vol. 25, iss. 3, pp. 148-160. DOI: 10.18500/1608-4039-2025-25-3-148-160, EDN: YSFGDF
Catalysts for oxygen electroreduction in alkaline medium based on carbon nanotubes modified with urea and phthalocyanines of iron, cobalt and palladium
Catalysts for oxygen reduction in the alkaline electrolyte based on multi-walled carbon nanotubes modified with urea and phthalocyanines of iron, cobalt and palladium were synthesized and studied. Physicochemical studies of the surface of the synthesized materials were carried out using porosimetry, Raman spectroscopy, X-ray phase analysis and X-ray photoelectron spectroscopy. The catalyst doped with metal phthalocyanines (MWCNT(Urea)_CoPc_FePc_Pd) has the largest surface area. It can be assumed that the high specific surface area of this catalyst is obtained due to the formation of new layers of hierarchical carbon on the surface of the nanotubes during high-temperature pyrolysis. It was established that metal phthalocyanines are nitrogen dopants in the structure of carbon nanotubes. The electrocatalytic properties of the synthesized catalysts in the oxygen reduction reaction were studied using the voltammetric method.
- Jiang Y., Yang L., Sun T., Zhao J., Lyu Z., Zhuo O., Wang X., Wu Q., Ma J., Hu Z. Significant contribution of intrinsic carbon defects to oxygen reduction activity. ACS Catalysis, 2015, vol. 5, iss. 11, pp. 6707– 6712. https://doi.org/10.1021/acscatal.5b01835
- Yan X., Jia Y., Yao X. Defects on carbons for electrocatalytic oxygen reduction. Chemical Society Reviews, 2018, vol. 47, iss. 20, pp. 7628–7658. https://doi.org/10.1039/c7cs00690j
- Singh S. K., Takeyasu K., Nakamura J. Active sites and mechanism of oxygen reduction reaction electrocatalysis on nitrogen-doped carbon materials. Advanced Materials, 2019, vol. 31, iss. 13, art. e1804297. https://doi.org/10.1002/adma.201804297
- Lu H. J., Li Y., Zhang L. Q., Li H. N., Zhou X., Liu A. R., Zhang Y. J., Liu S. Q. Synthesis of B-doped hollow carbon spheres as efficient non-metal catalyst for oxygen reduction reaction. RSC Advances, 2015, vol. 5, iss. 64, pp. 52126–52131. https://doi.org/10.1039/c5ra07909h
- Sun Y., Wu J., Tian J., Jin C., Yang R. Sulfurdoped carbon spheres as efficient metal-free electrocatalysts for oxygen reduction reaction. Electrochimica Acta, 2015, vol. 178, pp. 806–812. https://doi.org/10.1016/j.electacta.2015.08.059
- Wu J., Yang Z., Sun Q., Li X., Strasser P., Yang R. Synthesis and electrocatalytic activity of phosphorus-doped carbon xerogel for oxygen reduction. Electrochimica Acta, 2014, vol. 127, pp. 53–60. https://doi.org/10.1016/j.electacta.2014.02.016
- Wu B., Meng H., Morales D. M., Zeng F., Zhu J., Wang B., Risch M., Xu Z. J., Petit T. Nitrogen‐rich carbonaceous materials for advanced oxygen electrocatalysis: Synthesis, characterization, and activity of nitrogen sites. Advanced Functional Materials, 2022, vol. 32, iss. 31, art. 2204137. https://doi.org/10.1002/adfm.202204137
- Guo K., Li N., Bao L., Zhang P., Lu X. Intrinsic carbon structural imperfections for enhancing energy conversion electrocatalysts. Chemical Engineering Journal, 2023, vol. 466, art. 143060. https://doi.org/10.1016/j.cej.2023.143060
- Wang T., Chutia A., Brett D. J., Shearing P. R., He G., Chai G., Parkin I. P. Palladium alloys used as electrocatalysts for the oxygen reduction reaction. Energy & Environmental Science, 2021, vol. 14, iss. 5, pp. 2639–2669. https://doi.org/10.1039/d0ee03915b
- Jiang S., Zhu C., Dong S. Cobalt and nitrogencofunctionalized graphene as a durable non-precious metal catalyst with enhanced ORR activity. Journal of Materials Chemistry. A, 2013, vol. 1, iss. 11, pp. 3593– 3599. https://doi.org/10.1039/c3ta01682j
- Zhang Z., Sun J., Wang F., Dai L. Efficient oxygen reduction reaction (ORR) catalysts based on single iron atoms dispersed on a hierarchically structured porous carbon framework. Angewandte Chemie, 2018, vol. 130, iss. 29, pp. 9176–9181. https://doi.org/10.1002/ange.201804958
- Li X., Wang Z., Su Z., Zhao Z., Cai Q., Zhao J. Phthalocyanine-supported single-atom catalysts as a promising bifunctional electrocatalyst for ORR/OER: A computational study. ChemPhysMater, 2022, vol. 1, iss. 3, pp. 237–245. https://doi.org/10.1016/j.chphma.2022.04.002
- Liang Z., Wang H. Y., Zheng H., Zhang W., Cao R. Porphyrin-based frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide. Chemical Society Reviews, 2021, vol. 50, iss. 4, pp. 2540–2581. https://doi.org/10.1039/d0cs01482f
- Mei Z. Y., Cai S., Zhao G., Zou X., Fu Y., Jiang J., An Q., Li M., Liu T., Guo H. Boosting the ORR active and Zn-air battery performance through ameliorating the coordination environment of iron phthalocyanine. Chemical Engineering Journal, 2022, vol. 430, art. 132691. https://doi.org/10.1016/j.cej.2021.132691
- Hebié S., Bayo-Bangoura M., Bayo K., Servat K., Morais C., Napporn T. W., Boniface Kokoh K. Electrocatalytic activity of carbon-supported metallophthalocyanine catalysts toward oxygen reduction reaction in alkaline solution. Journal of Solid State Electrochemistry, 2016, vol. 20, iss. 4, pp. 931–942. https://doi.org/10.1007/s10008-015-2932-6
- Thommes M., Kaneko K., Neimark A. V., Olivier J. P., Rodriguez-Reinoso F., Rouquerol J., Sing K. S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 2015, vol. 87, iss. 9-10, pp. 1051–1069. https://doi.org/10.1515/pac-2014-1117
- Sadezky A., Muckenhuber H., Grothe H., Niessner R., Pöschl U. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon, 2005, vol. 43, iss. 8, pp. 1731–1742. https://doi.org/10.1016/j.carbon.2005.02.018
- Zhang H. B., Lin G. D., Zhou Z. H., Dong X., Chen T. Raman spectra of MWCNTs and MWCNTbased H2-adsorbing system. Carbon, 2002, vol. 40, iss. 13, pp. 2429–2436. https://doi.org/10.1016/s0008-6223(02)00148-3
- Zhang J. X., Yang X. L., Shao H. F., Tseng C. C., Wang D. S., Tian S. S., Hu W. J., Jing C., Tian J. N., Zhao Y. C. Microwave-assisted synthesis of pd oxide-rich pd particles on nitrogen/sulfur co-doped graphene with remarkably enhanced ethanol electrooxidation. Fuel Cells, 2017, vol. 17, iss. 1, pp. 115–122. https://doi.org/10.1002/fuce.201600153
- Zhu M., Diao G. Synthesis of porous Fe3O4 nanospheres and its application for the catalytic degradation of xylenol orange. The Journal of Physical Chemistry C, 2011, vol. 115, iss. 39, pp. 18923–18934. https://doi.org/10.1021/jp200418j
- Buğday N., Altin S., Yaşar S. Porous carbon‐supported CoPd nanoparticles: High‐performance reduction reaction of nitrophenol. Applied Organometallic Chemistry, 2022, vol. 36, iss. 8, art. e6797. https://doi.org/10.1002/aoc.6797
- Ma M., Zhu W., Shao Q., Shi H., Liao F., Shao C., Shao M. Palladium–copper bimetallic nanoparticles loaded on carbon black for oxygen reduction and zinc–air batteries. ACS Applied Nano Materials, 2021, vol. 4, iss. 2, pp. 1478–1484. https://doi.org/10.1021/acsanm.0c02997