For citation:
Ivanishchev A. V. Approaches to the Creation of Electrodes Based on Lithium Intercalation Compounds. Electrochemical Energetics, 2018, vol. 18, iss. 2, pp. 51-76. DOI: 10.18500/1608-4039-2018-18-2-51-76, EDN: XSLOUX
Approaches to the Creation of Electrodes Based on Lithium Intercalation Compounds
DOI: https://doi.org/10.18500/1608-4039-2018-18-2-51-76
The review contains information on modern methods and approaches to the obtaining of solid lithium-accumulating compounds of various classes, their modification with the purpose of increasing the properties of accumulation of lithium ions in the structure, accelerating the kinetics of reversible lithium insertion, the formation of electroactive composites based on these compounds, composite electrode layers on a metal substrate using these composites. The review provides a comparative analysis of the literature data, as well as the results obtained by the author himself.
1. Guerard D., Herold A. Intercalation of lithium into graphite and other carbons. $Car\-bon$, 1975, vol. 13, pp. 337–345.
2. Basu S., Zeller C., Flanders P. J., Fuerst C. D., Johnson W. D., Fischer J. E. Synthesis and properties of lithium-graphite intercalation compounds. Mater. Sci. Eng., 1979, vol. 38, pp. 275–283.
3. Mizushima K., Jones P. C., Wiseman P. J., Goodenough J. B. LixCoO2 (0
4. Padhi A. K., Nanjundaswamy K. S., Goodenough J. B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc., 1997, vol. 144, pp. 1188–1194.
5. Padhi A. K., Nanjundaswamy K. S., Masquelier C., Goodenough J. B. Mapping of transition metal redox energies in phosphates with NASICON structure by lithium intercalation. J. Electrochem. Soc., 1997, vol. 144, pp. 2581–2586.
6. Fu P., Zhao Y., Dong Y., An X., Shen G. Synthesis of Li3V2(PO4)3 with high performance by optimized solid-state synthesis routine. J. Power Sources, 2006, vol. 162, pp. 651–657.
7. Jiang T., Pan W., Wang J., Bie X., Dub F., Wei Y., Wang C., Chen G. Carbon coated Li3V2(PO4)3 cathode material prepared by a PVA assisted sol-gel method. Electrochim. Acta, 2010, vol. 55, pp. 3864–3869.
8. Duan W., Hu Z., Zhang K., Cheng F., Tao Z., Chen J. Li3V2(PO4)3/C core-shell nanocomposite as a superior cathode material for lithium-ion batteries. $Na\-nos\-ca\-le$, 2013, vol. 5, pp. 6485–6490.
9. Ko Y. N., Koo H. Y., Kim J. H., Yi J. H., Kang Y. C., Lee J. H. Characteristics of Li3V2(PO4)3/C powders prepared by ultrasonic spray pyrolysis. J. Power Sources, 2011, vol. 196, pp. 6682–6687.
10. Wang C., Liu H., Yang W. An integrated core-shell structured Li3V2(PO4)3/C cathode material of LIBs prepared by a momentary freeze-drying method. J. Mater. Chem., 2012, vol. 22, pp. 5281–5285.
11. Chen Q., Zhang T., Qiao X., Lic D., Yang J. Li3V2(PO4)3/C nanofibers composite as a high performance cathode material for lithium-ion battery. J. Power Sources, 2013, vol. 234, pp. 197–200.
12. Wang L., Zhang L.-C., Lieberwirth I., , Chen C.-H. A Li3V2(PO4)3/C thin film with high rate capability as a cathode material for lithium-ion batteries. Electrochem. Commun., 2010, vol. 12, pp. 52–55.
13. Chang C., Xiang J., Shi X., Han X., Yuan L., Sun J. Rheological phase reaction synthesis and electrochemical performance of Li3V2(PO4)3/carbon cathode for lithium ion batteries. Electrochim. Acta, 2008, vol. 53, pp. 2232–2237.
14. Li X., He W., Xiao Z., Peng F., Chen J. Ionothermal synthesis and rate performance studies of nanostructured Li3V2(PO4)3/C composites as cathode materials for lithium-ion batteries. J. Solid State Electr., 2013, vol. 17, pp. 1991–2000.
15. Ren M. M., Zhou Z., Gao X. P., Peng W. X., Wei J. P. Core-Shell Li3V2(PO4)3/C Composites as Cathode Materials for Lithium-Ion Batteries. J. Phys. Chem. C, 2008, vol. 112, pp. 5689–5693.
16. Rui X. H., Li C., Chen C. H. Synthesis and characterization of carbon-coated Li3V2(PO4)3 cathode materials with different carbon sources. Electrochim. Acta, 2009, vol. 54, pp. 3374–3380.
17. Chen Q., Wang J., Tang Z., He W., Shao H., Zhang J. Electrochemical performance of the carbon coated Li3V2(PO4)3 cathode material synthesized by a sol-gel method. Electrochim. Acta, 2007, vol. 52, pp. 5251–5257.
18. Dahn J. R., Sleigh A. K., Shi H., Reimers J. N., Way B. M., Zhong Q., Von Sacken U. Carbons and Graphites as Substitutes for the Lithium Anode, in Lithium Batteries; New Materials, New Perspectives. In: Lithium batteries: new materials, developments, and perspectives. Ed. by G. Pistoia. Elsevier, 1994. P. 147.
19. Tran T. D., Feikert J. H., Song X., Kinoshita K. Commercial Carbonaceous Materials as Lithium Intercalation Anodes. J. Electrochem. Soc., 1995, vol. 142, pp. 3297–3302.
20. Anani A., Crouch-Baker S., Huggins R. A. Kinetic and Thermodynamic Parameters of Several Binary Lithium Alloy Negative Electrode Materials at Ambient Temperature. J. Electrochem. Soc., 1987, vol. 134, pp. 3098–3102.
21. Winter M., Besenhard J. O. Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim. Acta, 1999, vol. 45, pp. 31–50.
22. Idota Y., Kubota T., Matsufuji A., Maekawa Y., Miyasaka T. Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material. Science, 1997, vol. 276, pp. 1395–1397.
23. Sharma R. A., Seefurth R. N. Thermodynamic Properties of the Lithium-Silicon System. J. Electrochem. Soc., 1976, vol. 123, pp. 1763–1768.
24. Boukamp B. A., Lesh G. C., Huggins R. A. All-Solid Lithium Electrodes with Mixed-Conductor Matrix. J. Electrochem. Soc., 1981, vol. 128, pp. 725–729.
25. Julien C. M., Mauger A., Zaghib K., Groult H. Comparative Issues of Cathode Materials for Li-Ion Batteries. $Inor\-ga\-nics$, 2014, vol. 2, pp. 132–154.
26. Dahn J. R., Fuller E. W., Obrovac M., yon Sacken U. Thermal stability of LixCoO2, LixNiO2 and l-MnO2 and consequences for the safety of Li-ion cells. Solid State Ionics, 1994, vol. 69, pp. 265–270.
27. Baba Y., Okada S., Yamaki J.-I. Thermal stability of LixCoO2 cathode for lithium ion battery. Solid State Ionics, 2002, vol. 148, pp. 311–316.
28. MacNeil D. D., Dahn J. R. The Reaction of Charged Cathodes with Nonaqueous Solvents and Electrolytes I. Li0.5CoO2. J. Electrochem. Soc., 2001, vol. 148, pp. A1205–A1210.
29. Bang H. J., Joachin H., Yang H., Amine K., Prakash J. Contribution of the Structural Changes of LiNi0.8Co0.15Al0.05O2 Cathodes on the Exothermic Reactions in Li-Ion Cells. J. Electrochem. Soc., 2006, vol. 153, pp. A731–A737.
30. Zaghib K., Dube J., Dallaire A., Galoustov K., Guerfi A., Ramanathan M., Benmayza A., Prakash J., Mauger A., Julien C. M. Enhanced thermal safety and high power performance of carbon-coated LiFePO4 olivine cathode for Li-ion batteries. J. Power Sources, 2012, vol. 219, pp. 36–44.
31. Doughty D., Roth E. P. A General Discussion of Li Ion Battery Safety. The Electrochemical Society’s Interface, 2012, vol. 21, pp. 37–44.
32. Mizushima K., Jones P. C., Wiseman P. J., Goodenough J. B. LixCoO2 (0
33. Plichta E., Salomon M., Slane S., Uchiyama M., Chua D., Ebner W. B., Lin H. W. A rechargeable Li/LixCoO2 Cell. J. Power Sources, 1987, vol. 21, pp. 25–31.
34. Antolini E. LiCoO2: formation, structure, lithium and oxygen nonstoichiometry, electrochemical behaviour and transport properties. Solid State Ionics, 2004, vol. 170, pp. 159–171.
35. Peng Z. S., Wan C. R., Jiang C. Y. Synthesis by sol-gel process and characterization of LiCoO2 cathode materials. J. Power Sources, 1998, vol. 72, pp. 215–220.
36. Yang W.-D., Hsieh C.-Y., Chuang H.-J., Chen Y.-S. Preparation and characterization of nanometric-sized LiCoO2 cathode materials for lithium batteries by a novel sol-gel method. Ceram. Int., 2010, vol. 36, pp. 135–140.
37. Porthault H., Cras F. Le, Franger S. Synthesis of LiCoO2 thin films by sol-gel process. J. Power Sources, 2010, vol. 195, pp. 6262–6267.
38. Jeong E.-D., Won M.-S., Shim Y.-B. Cathodic properties of a lithium-ion secondary battery using LiCoO2 prepared by a complex formation reaction. J. Power Sources, 1998, vol. 70, pp. 70–77.
39. Li Y., Wan C., Wu Y., Jiang C., Zhu Y. Synthesis and characterization of ultrafine LiCoO2 powders by a spray-drying method. J. Power Sources, 2000, vol. 85, pp. 294–298.
40. Santiago E. I., Andrade A. V. C., Paiva-Santosc C. O., Bulhoes L. O. S. Structural and electrochemical properties of LiCoO2 prepared by combustion synthesis. Solid State Ionics, 2003, vol. 158, pp. 91–102.
41. Larcher D., Palacin M. R., Amatucci G. G., Tarascon J.-M. Electrochemically Active LiCoO2 and LiNiO2 Made by Cationic Exchange under Hydrothermal Conditions. J. Electrochem. Soc., 1997, vol. 144, pp. 408–417.
42. Adschiri T., Hakuta Y., Arai K. Hydrothermal Synthesis of Metal Oxide Fine Particles at Supercritical Conditions. Ind. Eng. Chem. Res., 2000, vol. 39, pp. 4901–4907.
43. Shin Y. H., Koo S.-M, Kim D. S., Lee Y.-H., Veriansyah B., Kim J., Lee Y.-W. Continuous hydrothermal synthesis of HT-LiCoO2 in supercritical water. J. Supercrit. Fluid., 2009, vol. 50, pp. 250–256.
44. Obrovac M. N., Mao O., Dahn J. R. Structure and electrochemistry of LiMO2 (M=Ti, Mn, Fe, Co, Ni) prepared by mechanochemical synthesis. Solid State Ionics, 1998, vol. 112, pp. 9–19.
45. Yan H., Huang X., Lu Z., Huang H., Xue R., Chen L. Microwave synthesis of LiCoO2 cathode materials. J. Power Sources, 1997, vol. 68, pp. 530–532.
46. Ogihara T., Kodera T., Myoujin K., Motohira S. Preparation and electrochemical properties of cathode materials for lithium ion battery by aerosol process. Mater. Sci. Eng. B, 2009, vol. 161, pp. 109–114.
47. Chung S.-Y., Bloking J. T., Chiang Y.-M. Electronically conductive phospho-olivines as lithium storage electrodes. Nat. Mater., 2002, vol. 1, pp. 123–128.
48. Park K. S., Son J. T., Chung H. T., Kim S. J., Lee C. H., Kang K. T., Kim H. G. Surface modification by silver coating for improving electrochemical properties of LiFePO4. Solid State Commun., 2004, vol. 129, p. 311–314.
49. Konarova M., Taniguchi I. Preparation of carbon coated LiFePO4 by a combination of spray pyrolysis with planetary ball-milling followed by heat treatment and their electrochemical properties. Powder Technol., 2009, vol. 191, pp. 111–116.
50. Zaghib K., Ravet N., Gauthier M., Gendron F., Mauger A., Goodenough J. B., Julien C. M. Optimized electrochemical performance of LiFePO4 at 60°C with purity controlled by SQUID magnetometry. J. Power Sources, 2006, vol. 163, pp. 560–566.
51. Kim C. W., Park J. S., Lee K. S. Effect of Fe2P on the electron conductivity and electrochemical performance of LiFePO4 synthesized by mechanical alloying using Fe3+ raw material. J. Power Sources, 2006, vol. 163, pp. 144–150.
52. Kim J.-K., Choi J.-W., Chauhan G. S., , Hwang G.-C., Choi J.-B., Ahn H.-J. Enhancement of electrochemical performance of lithium iron phosphate by controlled sol-gel synthesis. Electrochim. Acta, 2008, vol. 53, pp. 8258–8264.
53. Wang K., Cai R., Yuan T., Yu X., Ran R., Shao Z. Process investigation, electrochemical characterization and optimization of LiFePO4/C composite from mechanical activation using sucrose as carbon source. Electrochim. Acta, 2009, vol. 54, pp. 2861–2868.
54. Gao X., Hu G., Peng Z., Du K. LiFePO4 cathode power with high energy density synthesized by water quenching treatment. Electrochim. Acta, 2009, vol. 54, pp. 4777–4782.
55. Yu F., Zhang J., Yang Y., Song G. Reaction mechanism and electrochemical performance of LiFePO4/C cathode materials synthesized by carbothermal method. Electrochim. Acta, 2009, vol. 54, pp. 7389–7395.
56. Liu H.-P., Wang Z.-X., Li X.-H., Guo H.-J., Peng W.-J., Zhang Y.-H., Hu Q.-Y. Reaction mechanism and electrochemical performance of LiFePO4/C cathode materials synthesized by carbothermal method. Electrochim. Acta, 2009, vol. 54, pp. 7389–7395.
57. Kadoma Y., Kim J.-M., Abiko K., Ohtsuki K., Ui K., Kumagai N. Optimization of electrochemical properties of LiFePO4/C prepared by an aqueous solution method using sucrose. Electrochim. Acta, 2010, vol. 55, pp. 1034–1041.
58. Pei B., Wang Q., Zhang W., Yang Z., Chen M. Enhanced performance of LiFePO4 through hydrothermal synthesis coupled with carbon coating and cupric ion doping. Electrochim. Acta, 2011, vol. 56, pp. 5667–5672.
59. Liu Y., Cao C. Enhanced electrochemical performance of nano-sized LiFePO4/C synthesized by an ultrasonic-assisted co-precipitation method. Electrochim. Acta, 2010, vol. 55, pp. 4694–4699.
60. Huang B., Zheng X., Fan X., Song G., Lu M. Enhanced rate performance of nano-micro structured LiFePO4/C by improved process for high-power Li-ion batteries. Electrochim. Acta, 2011, vol. 56, pp. 4865–4868.
61. Zhang D., Cai R., Zhou Y., Shao Z., Liao X.-Z., Ma Z.-F. Effect of milling method and time on the properties and electrochemical performance of LiFePO4/C composites prepared by ball milling and thermal treatment. Electrochim. Acta, 2010, vol. 55, pp. 2653–2661.
62. Cheng F., Wan W., Tan Z., Huang Y., Zhou H., Chen J., Zhang X. High power performance of nano-LiFePO4/C cathode material synthesized via lauric acid-assisted solid-state reaction. Electrochim. Acta, 2011, vol. 56, p. 2999–3005.
63. Wang Y., Sun B., Park J.-S., Kim W.-S., Kim H.-S., Wang G. Morphology control and electrochemical properties of nanosize LiFePO4 cathode material synthesized by co-precipitation combined with in situ polymerization. J. Alloy. Compd., 2011, vol. 509, pp. 1040–1044.
64. Yang L., Liang G., Wang L., Zhi X., Ou X. Effect of consumption amount of lithium salt on the properties of LiFePO4/C cathode materials. J. Alloy. Compd., 2010, vol. 496, pp. 376–379.
65. Wang M., Xue Y., Zhang K., Zhang Y. Synthesis of FePO4?2H2O nanoplates and their usage for fabricating superior high-rate performance LiFePO4. Electrochim. Acta, 2011, vol. 56, pp. 4294–4298.
66. Liu Y., Cao C., Li J. Enhanced electrochemical performance of carbon nanospheres – LiFePO4 composite by PEG based sol-gel synthesis. Electrochim. Acta, 2010, vol. 55, pp. 3921–3926.
67. Zhang Y., Feng H., Wu X., Wang L., Zhang A., Xia T., Dong H., Liu M. One-step microwave synthesis and characterization of carbon-modified nanocrystalline LiFePO4. Electrochim. Acta, 2009, vol. 54, pp. 3206–3210.
68. Myung S.-T., Komaba S., Hirosaki N., Yashiro H., Kumagai N. Emulsion drying synthesis of olivine LiFePO4/C composite and its electrochemical properties as lithium intercalation material. Electrochim. Acta, 2004, vol. 49, pp. 4213–4222.
69. Waser O., Buchel R., Hintennach A., Novak P., Pratsinis S. E. Continuous flame aerosol synthesis of carbon-coated nano-LiFePO4 for Li-ion batteries. J. Aerosol. Sci., 2011, vol. 42, pp. 657–667.
70. Bai Y.-M., Qiu P., Wen Z.-L., Han S.-C. Improvement of electrochemical performances of LiFePO4 cathode materials by coating of polythiophene. J. Alloy. Compd., 2010, vol. 508, pp. 1–4.
71. Yang G., Zhang X., Liu J., He X., Wang J., Xie H., Wang R. Synthesis of LiFePO4/polyacenes using iron oxyhydroxide as an iron source. J. Power Sources, 2010, vol. 195, pp. 1211–1215.
72. Nien Y.-H., Carey J. R., Chen J.-S. Physical and electrochemical properties of LiFePO4/C composite cathode prepared from various polymer-containing precursors. J. Power Sources, 2009, vol. 193, pp. 822–827.
73. Zhao B., Jiang Y., Zhang H., Tao H., Zhong M., Jiao Z. Morphology and electrical properties of carbon coated LiFePO4 cathode materials. J. Power Sources, 2009, vol. 189, pp. 462–466.
74. Zhao X., Tang X., Zhang L., Zhao M., Zhai J. Effects of neodymium aliovalent substitution on the structure and electrochemical performance of LiFePO4. Electrochim. Acta, 2010, vol. 55, pp. 5899–5904.
75. Armand M., Tarascon J.-M. Building better batteries. $Na\-ture$, 2008, vol. 451, pp. 652–657.
76. Inagaki M., Kaneko K., Nishizawa T. Nanocarbons – recent research in Japan. $Car\-bon$, 2004, vol. 42, pp. 1401–1417.
77. Inaba M., Yoshida H., Ogumi Z. In situ Roman Study of Electrochemical Lithium Insertion into Mesocarbon Microbeads Heat-Treated at Various Temperatures. J. Electrochem. Soc., 1996, vol. 143, p. 2572–2578.
78. Kavan L., Gratzel M., Rathousky J., Zukalb A. Nanocrystalline TiO2 (Anatase) Electrodes: Surface Morphology, Adsorption, and Electrochemical Properties. J. Electrochem. Soc., 1996, vol. 143, pp. 394–400.
79. Wagemaker M., Borghols W. J. H., Mulder F. M. Large Impact of Particle Size on Insertion Reactions. A Case for Anatase LixTiO2. J. Amer. Chem. Soc., 2007, vol. 129, pp. 4323–4327.
80. Ortiz G. F., Hanzu I., Lavela P., Tirado J. L., Knauth P., Djenizian T. A novel architectured negative electrode based on titania nanotube and iron oxide nanowire composites for Li-ion microbatteries. J. Mater. Chem., 2010, vol. 20, pp. 4041–4046.
81. Wen C. J., Huggins R. A. Chemical diffusion in intermediate phases in the lithium-tin system. J. Solid State Chem., 1980, vol. 35, pp. 376–384.
82. Wang J., Raistrick I. D., Huggins R. A. Behavior of Some Binary Lithium Alloys as Negative Electrodes in Organic Solvent-Based Electrolytes. J. Electrochem. Soc., 1986, vol. 133, pp. 457–460.
83. Nacimiento F., Alcantara R., Tirado J. L. Cobalt and tin oxalates and PAN mixture as a new electrode material for lithium ion batteries. J. Electroanal. Chem., 2010, vol. 642, pp. 143–149.
84. Whitehead A. H., Elliott J. M., Owen J. R., Attard G. S. Electrodeposition of mesoporous tin films. Chem. Commun. 1999, vol. 0, pp. 331–332.
85. Uchida I., Sato H. Preparation of Binder-Free, Thin Film LiCoO2 and Its Electrochemical Responses in a Propylene Carbonate Solution. J. Electrochem. Soc., 1995, vol. 142, pp. L139-L141.
86. Guo Q., Subramanian V. R., Weidner J. W., White R. E. Estimation of Diffusion Coefficient of Lithium in Carbon Using AC Impedance Technique. J. Electrochem. Soc., 2002, vol. 149, pp. A307–A318.
87. Volgin M. A., Churikov A. V., Konopljanceva N. A., Gridina N. A., L’vov A. L. Jelektrohimicheskaja interkaljacija litija v tonkie sloi pirougleroda [Electrochemical lithium intercalation into thin pyrolytic carbon layers]. Elektrohimija, 1998, vol. 34, pp. 761–767 (in Russian).
88. Fialkov A. S. Uglerod, mezhsloevye soedinenija i kompozity na ego osnove [Carbon, interlayer compounds and composites on its base]. Moscow, Aspekt press, 1997. 718 p. (in Russian).
89. Fialkov A. S. Formirovanie struktury i svojstv uglegrafitovyh materialov [Structure and properties formation of carbonaceous materials]. Moscow, Metallurgija Publ., 1965. 288 p. (in Russian).
90. Baker R. T., Harris P. S. The formation of filamentous carbon. In: Chemistry and physics of carbon. Ed. P. L. Walker, New York, Basel, M. Dekker Inc., 1978, vol. 5, pp. 83–165.
91. Granqvist C. G. Electrochromic tungsten oxide films: Review of progress 1993–1998. Sol. Energ. Mat. Sol. C, 2000, vol. 60, pp. 201–262.
92. Cantalini C., Sun H. T., Faccio M., Pelino M., Santucci S., Lozzi L., Passacantando M. NO2 sensitivity of WO3 thin film obtained by high vacuum thermal evaporation. Sensor. Actuat. B-Chem., 1996, vol. 31, pp. 81–87.
93. Nanba T., Takahashi T., Takada J., Osaka A., Miura Y., Yasui I., Kishimoto A., Kudo T. Characterization of amorphous tungsten trioxide thin films prepared by rf magnetron sputtering method. J. Non-Cryst. Solids, 1994, vol. 178, pp. 233–237.
94. Meulenkamp E. A. Mechanism of WO3 Electrodeposition from Peroxy-Tungstate Solution. J. Electrochem. Soc., 1997, vol. 144, pp. 1664–1671.
95. Aleshina L. A., Glazkova S. V., Lugovskaja L. A., Malinenko V. P., Fofanov A. D. Vozdejstvie ciklicheskogo perekljuchenija naprjazhenija na strukturu amorfnogo anodnogo WO3 [Influence of cyclic voltage switching on the structure of amorphous anodized WO3]. Elektrohimija, 1998, vol. 34, pp. 988–994 (in Russain).
96. Modestov A. D., Cheshko A. D., Davydov A. D. Issledovanie anodnogo povedenija vol’frama v metansul’fonovoj kislote metodami vol’tamperometrii, jelektrohmicheskogo impedansa i fotojelektrohimii [Study of tungsten anodic behavior in methanesulphonic acid using voltammetry, electrochemical impedance and photoelectrochemical methods]. Elektrohimija, 1998, vol. 34, pp. 1468–1475 (in Russain).
97. Biaggio S. R., Rocha-Filho R. C., Vilche J. R., Varela F. E., Gassa L. M. A study of thin anodic WO3 films by electrochemical impedance spectroscopy. Electrochim. Acta, 1997, vol. 42, pp. 1751–1758.
98. Goossens A., Macdonald D. D. A photoelectrochemical impedance spectroscopic study of passive tungsten. J. Electroanal. Chem., 1993, vol. 352, pp. 65–81.
99. Kim J.-D., Pyun S.-I., Oriani R. A. Effects of applied current density and potential step on the stress generation during anodic oxidation of tungsten in 0.1 M H2SO4 solution. Electrochim. Acta, 1995, vol. 40, pp. 1171–1176.
100. Davazoglou D., Donnadieu A. Optical oscillator strengths and quantum mechanics matrix elements of WO3 polycrystalline thin films. J. Non-Cryst. Solids, 1994, vol. 169, pp. 64–71.
101. Davazoglou D., Moutsakis A., Valamontes V., Psycharis V., Tsamakis D. Tungsten Oxide Thin Films Chemically Vapor Deposited at Low Pressure by W(CO)6 Pyrolysis. J. Electrochem. Soc., 1997, vol. 144, pp. 595–599.
102. Arakaki J., Reyes R., Horn M., Estrada W. Electrochromism in NiOx and WOx obtained by spray pyrolysis. Sol. Energ. Mat. Sol. C, 1995, vol. 37, pp. 33–41.
103. Kim D.-J., Pyun S.-I. Hydrogen transport through anodic WO3 films. Electrochim. Acta, 1998, vol. 43, pp. 2341–2347.
104. Macdonald D. D., Sikora E., Sikora J. The kinetics of growth of the passive film on tungsten in acidic phosphate solutions. Electrochim. Acta, 1998, vol. 43, pp. 2851–2861.
105. Baruffaldi C., Cattarin S., Musiani M. Deposition of non-stoichiometric tungsten oxides + MO2 composites (M=Ru or Ir) and study of their catalytic properties in hydrogen or oxygen evolution reactions. Electrochim. Acta, 2003, vol. 48, pp. 3921–3927.
106. Sikora J., Sikora E., Macdonald D. D. The electronic structure of the passive film on tungsten. Electrochim. Acta, 2000, vol. 45, pp. 1875–1883.
107. Timofeeva E. V., Tsirlina G. A., Petrii O. A. Formation of Rechargeable Films on Platinum in Sulfuric Acid Solutions of Isopolytungstates. Russ. J. Electrochem., 2003, vol. 39, pp. 795–806.
108. Grilihes S. Ja., Tihonov K. I. Elektroliticheskie i himicheskie pokrytija [Electrochemical and chemical coatings]. Leningrad, Himija Publ., 1990. 280 p. (in Russian).
109. Bokshtejn B. S. Diffuzija v metallah [Dif-
fusion in metals]. Moscow, Metallurgija Publ, 1978. 248 p. (in Russian).
110. State Standard 13345-85. Zhest [Tin-plate and black plate]. Specifications. Moscow, Standartinform Publ., 1987. 10 p. (in Russian).