ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Khrustov A. V., Gorelov V. P. Modelling of thermomechanical stresses in a tubular design SOFC. Electrochemical Energetics, 2010, vol. 10, iss. 2, pp. 62-70. DOI: 10.18500/1608-4039-2010-10-2-62-70

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
544.6.076.3

Modelling of thermomechanical stresses in a tubular design SOFC

Autors: 
Khrustov Anton Vladimirovich, Institute of high-temperature Electrochemistry UB of RAS
Gorelov V. P., Institute of high-temperature Electrochemistry UB of RAS
Abstract: 

Computer modelling of the mechanical stress state originating at manufacturing and heating to a working temperature of cells of the SOFC of a tubular design with classical functional materials (Ni-YSZ)/YSZ/LSM is developed. Electrolyte-supported and anode-supported cells are observed, and also the residual stresses originating by manufacture of the module a cone-cone with direct anode-cathode contact are simulated. Simulation of process of manufacturing anode-supported cells display that there is no the stress, able to lead to cell rupture. However, the high level of the strain energy stored in the thin electrolyte layer, under certain conditions constitute the driving force for interfacial delamination. Manufacturing of electrolyte-supported cell leads to a high tension stress in an anode layer that leads the anode layer cracking. Heating of cells to a working temperature and reduction of anode material partially removes residual stress in the cell. Lines of boundary of the thin layers with a supporting tube concentrate significant radial stresses and can serve as the centres of delamination. The stress state of a cone electrolyte-supported cell does not exceed dangerous level.

Reference: 
  1. Чеботин В. Н., Перфильев М. В. Электрохимия твёрдых электролитов. М.: Химия, 1978. 310 с.
  2. Turner M. J., Clough R. W., Martin H. C., Topp L. J. // J. Aeronaut. Sci. 1956. Vol. 23. P. 805–824.
  3. Segerlind L. Applied Finite Element Analysis. New York: Wiley, 1985. 448 p.
  4. Zienkiewicz O. The Finite Element Method in Engineering Science. London: McGraw Hill Publ., 1971. 518 p.
  5. Pihlatie M., Kaiser A., Mogensen M. // J. of the European Ceramic Society. 2009. Vol. 29. P. 1657.
  6. Giraud S., Canel J. // J. of the European Ceramic Society. 2008. Vol. 28. P. 77.
  7. Atkinson A., Selcuk A. // Acta Mater. 1999. Vol. 47, N. 3. P. 867.
  8. Selcuk A., Merere G., Atkinson A. // J. of Material Science. 2001. Vol. 36. P. 1173.
  9. Atkinson A,. Selcuk A. // Solid State Ionics. 2000. Vol. 134. P.59.
  10. Klemenso T., Chung C., Larsen P. H., Mogensen M. // J. Electrochem. Soc. 2005. Vol. 152 (11). P. A2186.
  11. Waldbillig D., Wood A., Ivey D. G. // Solid State Ionics. 2005. Vol. 176. P.847.
  12. Yakabe H., Baba Y., Sakurai T., Satoh M., Hirosawa I., Yoda Y. // J. Power Sources. 2004. Vol. 131. P.278.
  13. Fisher W., Malzbender J., Blass G., Steinbrech R.W. // J. Power Sources. 2005. Vol. 150. P.73.
  14. Laurencin J., Delette G., Dupeux M., Lefebvre-Joud F. // J. of the European Ceramic Society. 2008. Vol. 28. P.1857.
  15. Хрустов А. В., Горелов В. П., Кузьмин А. В., Богданович Н. М. // Фундаментальные проблемы ионики твёрдого тела: Черноголовка: Изд. гр. “Граница”, 2008. С. 96.
Received: 
01.03.2010
Accepted: 
01.03.2010
Published: 
25.06.2010