Cd|KOH|NiOOH

Zn|NH4CI|MnO2

Li|LiClO4|MnO2

Pb|H2SO4|PbO2

H2|KOH|O2

Heat balance analysis of solid oxide fuel cell battery

The paper analyzes the energy balance of the solid oxide fuel cell (SOFC) battery. The existence of three temperature points satisfying the equation of SOFC battery energy balance is found out. The first point is trivial and corresponds to the cooled state of the battery. The second temperature point corresponds to an unstable state of the battery and finally, the third point is stable and corresponds to the normal operating state of the battery. The difference between the third and second point defines the temperature interval within the battery is able to self-heating. Analogy with the Semenov diagram for chemical reactors is noted.

Literature

1. Korovin N. V. Toplivnye elementy i elektrokhimicheskie ustanovki [Fuel Cells and Electrochemical Power Units]. Moscow, Moskovskij energeticheskii institut Publ., 2005 (in Russian).
2. Minh N. Q., Takahashi Т. Science and Technology of Ceramic Fuel Cells. Elsevier, 1995.
3. Cordiner S., Mariani A., Mulone V. CFD-Based Design of Microtubular Solid Oxide Fuel Ceils. J. Heat Transfer. June, 2010, vol. 132, pp. 062801-1–062801-15.
4. Sinyarev G. B., Vatolin N. A., Trusov B. G., Moiseev G. K. Primenenie EVM dlya termodinamicheskikh raschetov metallurgicheskikh protsessov [Computer application in thermodynamic calculations of metallurgical processes]. Moscow, Nauka Publ., 1982 (in Russian).
5. Gurvitch L. V., Veitz I. V., Medvedev V. A., Khachkuruzov G. A., Yungman V. S., Bergman G. A., Baybuz V. F., Iorish V. S., Yurkov G. N., Gorbov S. I., Kuratova L. F., Rtishcheva N. P., Przheval'skiy I. N., Sizerman V. Yu., Leonidov V. Ya., Ezhov Yu. S., Tomberg S. E., Nazarenko I. I., Rogatskiy A. L., Dorofeeva O. V., Demidova M. S. Termodinamicheskie svoystva individual'nykh veshchestv [Thermodynamic properties of the individual materials]. Reference edition in 4 volumes. Moscow, Nauka Publ., 1982 (in Russian).
6. Gostev V. A. Parametry i kharakteristiki kamery ZhRD. Metodologiya issledovaniya [Parameters and specifications of LRE. Research Methodology]. Moscow, Moskovskii tehnicheskii universitet Publ., 2000 (in Russian).
7. Vasil'ev A. P., Kudryavtsev V. M., Kuznetsov V. A., Kurpatenkov V. D., Obel'nitskiy A. M., Polyaev V. M., Poluyan B. Ya. Osnovy teorii i rascheta zhidkostnykh raketnykh dvigateley [Theory and calculation fundamentals of liquid rocket engines]. In 2 books. Book 1. The 4st revised and supplemented edition. Moscow. Vishaya Shkola Publ., 1993 (in Russian).
8. Averkov I. S., Baykov A. V., Raznoschikov V. V. Termodinamika tverdooksidnogo toplivnogo elementa [Thermodynamics of solid oxide fuel cell]. Intern. Scientific Journal for Alternative Energy and Ecology. 2012, no. 2, pp. 11–18.
9. Kutateladze S. S., Borishanskiy V. M. Spravochnik po teploperedache [A Heat Transfer Textbook]. Leningrad. Moscow. Gosenergoizdat Publ., 1958 (in Russian).
10. Ivanov V. V., Lipilin A. S., Spirin A. V. Rempel A. A., Paranin S. N., Khrustov V. R., Shrekin S. N., Valentsev A. V., Zhuravlev V. D. Formirovanie mnogosloynykh struktur tverdooksidnogo toplivnogo elementa [Formation of multilayer compositions of solid oxide fuel cell]. Intern. Scientific J. for Alternative Energy and Ecology, 2007. no. 2, pp. 75–88.
11. Singhal S. C. Advances in solid oxide fuel cell technology. Solid State Ionics. 2000, vol. 135, pp. 305–313.
12. Bykov V. I., Tsybenova S.B. Nelineynye modeli khimicheskoy kinetiki [Nonlinear models of chemical kinetics]. Moscow, KRASAND Publ., 2011 (in Russian).

Heading: