Catalytic layers on the composites of polymers, carbon nanotubes and adsorbed platinum particles

The composites contained ultra low amounts of platinum, polymers and carbon nanotubes (SWCNTs) were investigated. The main goal were to elucidate the influence of the polymer functional groups nature on the structure and on electrocatalytic activity of the composites. The structure of the composite Platinum/sodium polystyrensulfonate (PSS)/SWCNTs/GC has been studied by TEM, HRSTEM, HAADF STEM and SAED methods. The loading of platinum was detected by ICP–AES. The electrochemical studies show high catalytic activity of the prepared composite in methanol oxidation reaction comparing to commercial catalyst Pt/C ETEK and other previously studied composites.


1. Ioroi T., Senoh H., Yamazaki S.I., Siroma Z., Fujiwara N., Yasuda K. J. Electrochem. Soc., 2008, vol. 155, no. 4, pp.B321 – В326.
2. Ioroi T., Siroma Z., Fujiwara N., Yamazaki S.I., Yasuda K. Electrochem. Comm., 2005, vol. 7, no. 2, pp. 183–188.
3. Chhina H., Campbell S., Kesler O. J. of Power Sources, 2006, vol. 161, no. 2, pp.893–900.
4. Chhina H., Campbell S., Kesler O. J. Electrochem. Soc., 2007, vol. 154, no. 6. pp. B533–B539.
5. Saha M.S., Banis M. N., Zhang Y. J. of Power Sources, 2009, vol. 192, no. 2, pp. 330–335.
6. Chen G., Bare S. R., Mallouk T. E. J. Electrochem. Soc., 2002, vol. 149, no. 8, pp. A1092–А1099.
7. Koninck M.D., Manseau P., Marsan B. J. Electroanal. Chem., 2007, vol.611, no. 1–2, pp. 67–79.
8. Park K.W., Seol K.S. Electrochem. Comm., 2007, vol. 9, no. 9, pp. 2256–2260.
9. Feng L. L., Ruthkosky M. S., Johnson J. T., Wagner F. T.; publication date: 24.06.2010; patent application number: 20100160153.
%Pat. 8025861US, C01G 23/047 (20060101). Making electrocatalyst supports for fuel cells. Cai Mei, Lu Yunfeng, Wu Zhiwang, Feng Lee Lizhong, Ruthkosky Martin S., Johnson John T., Wagner Frederick T.
10. Novoselov S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A. Science, 2004, vol.306, pp.666–669.
11. Geim A. K. Science, 2009, vol. 324, pp.1530–1534.
12. Zang S., Shao Y. Y., Liao H. G., Liu J., Aksay I.A., Yin G. P., Lin Y. H. Chem. Mater., 2011, vol. 23, pp.1079–1081.
13. Cui Z., Guo C. X., Li C. M. J. Mater. Chem., 2013, vol.1, pp.6687–6692.
14. Selvaraj V., Alagar M. Electrochem.Comm., 2007, vol.9, pp.1145–1153.
15. Santhosh P., Gopalan A., Lee K-P. J. Catal., 2006, vol. 238, pp.177–185.
16 . Zhu Z-Z., Wang Z., Li H-L. Applied Surface Science, 2008, vol.254, no. 10, pp. 2934–2940.
17. Hu Z. A., Ren L. J., Feng X. J., Wang Y. P., Yang Y. Y., Shi J., Mo L. P., Lei Z. G. Electrochem.Comm., 2007, vol. 7, no. 1, pp. 97–102.
18. Wang Z., Zhu Z. Z., Shi J., Li H. L. Applied Surface Science, 2007, vol. 253, no. 22, pp.8811–8817.
19. Capurina I.Ju., Kompan M. E., Zabrodskij A. G., Stejskal Ja., Trhova M. Elektrokhimiya, [ Russian Journal of Electrochemistry], 2007, vol.43, no. 5, pp.554–562. (in Russian).
20. Mikhaylova A. A., Tusseeva E. K., Mayorova N. A., Rychagov A. Yu., Volfkovich Yu. M., Krestinin A. V., Khazova O. A. Electrohimica Acta, 2011, vol.56, pp.3656–3665.
21. Tusseeva E. K., Zhigalina O. M., Chuvilin A. L., Naumkin A. V., Khazova O. A. Elektrokhimiya, [ Russian Journal of Electrochemistry], 2013, vol. 49, no. 1, pp. 7. (in Russian).
22. Wang S., Jiang S. P., Wang X. Nanotechnology, 2008, vol.19, pp. 265601 (6pp).
23. Wang S., Yang F., Jiang S. P., Chen S., Wang X. Electrochem. Comm., 2010, vol. 12, pp. 1646–1649.
24. Mavrikakis M., Hammer B., Norskov J. K. Physical Review Letters, 1998, vol.81, no. 13, pp.2819–2822.
25. Ruban A., Hammer B., Stoltze P., Skriver H. L., Norskov J. K. J. Mol. Catal. A:Chem.1997, vol. 115, no. 3, pp. 421–429.
26. Kitchin J. R., Norskov J. K., Barteau M.A., Chen J. G. J. Chem. Phys., 2004, vol. 120, no. 21, pp. 10240–10246.

Full Text (PDF):
(downloads: 32)