A study on LiMnyFe1-yPO4 as a cathode material for lithium-ion batteries

A series of solid phases (mixed lithium-iron-manganese phosphates) of the common formula LiMnyFe1-yPO4 (0 ≤ y ≤ 1) with a carbon coating on the particle surface was synthesized by mechanochemical activation with carbothermal reduction. The synthesized mixed phosphates were examined as promising cathode materials for lithium-ion batteries. The positive effect of replacement of a rather small fraction of iron by manganese is shown, which improves the electrochemical performance at the rates C/10–10C. The highest discharging capacity (above 160 mA·h/g at the C/10 rate, about 100 mA·h/g at the 10C rate) and cycling stability (the capacity decrease rate less than 0.05 mA·h/g per cycle at the 10 C rate) were established for the weakly doped cathode material LiMn0.05Fe0.95PO4.


1. Daniel T., Hallinan Jr., Nitash P. B. Annual Review of Materials Research, 2013, vol. 43, pp. 503–527.
2. Julien C. M., Mauger A. Ionics, 2013, vol. 19, pp. 951–988.
3. Jiajun Ch. Recent Patents on Nanotechnology, 2013, vol. 7. pp. 2–12.
4. Liu X., Chen Ch., Zhao Y., Jia B. J. of Nanomaterials, 2013, vol. 2013, article no. 736375. 7 p.
5. Tsivadze A. Yu., Kulova T. L., Skundin A. M. Protection of Metals and Physical Chemistry of Surfaces, 2013, vol. 49, pp.145–150.
6. Jiajun Ch. Materials, 2013, vol.6, pp. 156–183.
7. Zhang T., Li D., Tao Z., Chen J. Progress in Natural Sci.: Mat. Int., 2013, vol. 23, pp. 256–272.
8. Hu M., Pang X., Zhou Z. J. Power Sources, 2013, vol. 237, pp. 229–242.
9. Burmistrova N. A., Sycheva, V.O., Churikov A. V., Ivanisheva I. A. Elektrokhimicheskaya Energetika [Electrochemical energetics], 2009, vol. 9, no. 4, pp. 188–198. (In Russian).
10. Jugovic D., Uskokovic D. J. Power Sources, 2009, vol. 190, pp. 538–544.
11. Yamada A., Chung S. C., Hinokuma K. J. Electrochem. Soc., 2001, vol. 148, pp. A224-A229.
12. Li Z., Zhang D., Yang F. J Mater Sci., 2009, vol. 44, pp. 2435–2443.
13. Fedorkova A., Nacher-Alejos A., Gomez-romero P., Orinekova R., Kaniansky D. Electrochimica Acta, 2010, vol. 55, pp. 943–947.
14. Song G-M., Wu Y., Liu G., Xu Q. J. of Alloys and Compounds, 2009, vol. 487, pp. 214–217.
15. Sun C. S., Zhou Z., Xu Z. G., Wang D. G., Wei J. P., Bian X. K., Yan J. J. Power Sources, 2009, vol. 193, pp. 841–845.
16. Lee S. B., Cho S. H., Heo J. B., Aravindan V., Kim H. S., Lee Y. S. J. of Alloys and Compounds, 2009, vol. 488, pp. 380–385.
17. Shenouda A. Y., Liu H. K. J. of Alloys and Compounds, 2009, vol. 477, pp. 498–503.
18. Guo Z. P., Liu H., Bewlay S., Liu H. K., Dou S. X. Synthetic Metals, 2005, vol.153, pp. 113–116.
19. Ma J., Qin Q.-Z. J. Power Sources, 2005, vol.148, pp. 66–79.
20. Hu G.-R., Gao X.-G., Peng Z.-D., Du K., Tan X.-Y., Liu Y. J. Transactions Nonferrous Metals Society of China, 2007, vol.17, pp. 296–300.
21. Molenda J., Ojczyk W., Њwierczek K., Zaj№c W., Krok F., Dygas J., Liu R.-S. Solid State Ionics, 2006. vol. 177, pp. 2617–2624.
22. Shu H., Wang X., Wen W., Liang Q., Yang X., Wei Q., Hu B., Liu L., Liu X., Song Y., Zho M., Bai Y., Jiang L., Chen M., Yang S., Tan J., Liao Y., Jiang H. Electrochimica Acta, 2013, vol. 89, pp. 479–487.
23. Baster D., Zheng K., Zajac W., Swierczek K., Molenda J. Electrochimica Acta, 2013, vol. 92, pp. 79–86.
24. Liu H., Cao Q., Fu L. J., Li C., Wu Y. P., Wu H. Q. Electrochem. Com., 2006, vol. 8, pp. 1553–1557.
25. Islam M. S., Driscoll D. J., Fisher C. A.J., Slater P. R. Chem. Mater, 2005, vol. 17, pp. 5085–5092.
26. Shu H., Wang X., Wu Q., Hu B., Yang X., Wei Q., Liang Q., Bai Y., Zhou M., Wu Ch., Chen M., Wang A., Jiang L. J. Power Sources, 2013, vol. 237, pp. 149–155.
27. Nam K.-W., Wang X.-J., Yoon W.-S., Li H., Huang X., Haas O., Bai J., Yang X.-Q. Electrochem. Com., 2009, vol. 11, pp. 913–916.
28. Molenda J., Kulka A., Milewska A., Zajac W., Swierczek K. Materials, 2013, vol. 6, pp. 1656–1687.
29. Xu J., Chen G. Physica B, 2010, vol. 405, pp. 803–807.
30. Churikov A. V., Volynskii V. V., Gamayunova I. M., L`vov А. L., Reshetov V. А. Elektrokhimicheskaya Energetika [Electrochemical energetics], 2012, vol.12, no. 1, pp. 8–13. (In Russian).
31. Churikov A. V., Leenson I. A. Elektrokhimicheskaya Energetika [Electrochemical energetics], 2012, vol.12, no.1, p. 14–20. (In Russian).
32. Churikov A. V., Ivanishchev A. V., Ushakov A. V., Gamayunova I. M., Leenson I. A. J. Chem. & Eng. Data, 2013, vol. 58, pp. 1747–1759.
33. Churikov A., Gribov A., Bobyl A., Kamzin A., Terukov E. Ionics, 2013, DOI: 10.1007/s11581-013-0948-4.
34. Padhi A. K., Nanjuindaswamy K. S., Goodenough J. B. J. Electrochem. Soc., 1997, vol. 144, pp. 1188–1194.
35. Marzec J., Ojczyk W., Molenda J. Mater. Sci.-Poland, 2006, vol. 24, pp. 69–74.
36. Nam K.-W., Yoon W.-S., Zaghib K., Chung K. Y., Yang X.-Q. Electrochem. Com., 2009, vol. 11, pp. 2023–2026.
37. Kopec M., Yamada A., Kobayashi G., Nishimura S., Kanno R., Mauger A., Gendron F., Julien C. M. J. Power Sources, 2009, vol. 189, pp. 1154–1163.
38. Kobayashi G., Yamada A., Nishimura Sh., Kanno R., Kobayashi Y., Seki S., Ohno Y., Miyashiro H. J. Power Sources, 2009, vol. 189, pp 397–401.
39. Lee K. T., Lee K. S. J. Power Sources, 2009, vol. 189, pp. 435–439.
40. Chen Y.-C., Chen J.-M., Hsu C.-H., Lee J.-F., Yeh J.-W., Shih H. C. Solid State Ionics, 2009, vol. 180, pp. 1215–1219.
41. Hou X. H., Hu S. J., Li W. S., Zhao L. Z., Ru Q., Yu H. W., Huang Z. W. Chinese Sci. Bul., 2008, vol. 53, pp. 1763–1767.