Phase composition, electric conductivity, stability of solid electrolyte ZrO2–Sc2O3 and ZrO2–Sc2O3–CeO2 systems' characteristics in area of low content of Sc2O3 and CeO2

Phase composition, electric conductivity, stability of characteristics of a number ofspecimens of systems ZrO2-Sc2O3 (4.5–6.0 mol. %) and with addition 1 mol.% CeO2, prepared by usual ceramic method at the sintering temperature of 1800°С (in a vacuum) with subsequent annealing at the temperature of 1150°С (in air) were investigated by methods of X-ray investigation, temperature dependence of electric conductivity (350–750°C), cyclic resort tests at the temperature of 700°C. It was determined that in binary composition along with basic tetragonal phase there is a phase on basis of monoclinic ZrO2, which quantity recreases under the «prints» level with an increase of Sc2O3 content. CeO2 contributes to tetragonal models structure forming and increases its electric conductivity. At increased content of Sc2O3 and presence of addition of CeO2 observes tendency to cubic phase forming. It could be caused by separate grains with cubic structure presence or some content of high-temperature modification of tetragonal structure – T'-phase. Observed changes of structural and electrical characteristics of solid electrolyte when using long resort tests (900 hours) are caused by establishment of stable phase structures (for this temperature) and values of electric conductivity under its decreasing as a result of accumulation of grains of electrolytes phase sediments with decreased electric conductivity on a surface. CeO2 reduces degradation of tetragonal structure including its high-temperature modification – T'-phase. Explored solid electrolytes have high-enough stability of determined electrical characteristics with exception of examples with noticeable content of monoclinic phase.


1. Badwal S. P. S. // J. Mat. Sci. 1987. Vol. 22. P. 4125–4132.
2. Badwal S. P. S. // Solid State Ionics. 1992. Vol. 52. P. 23–32.
3. Yashima M., Kakihana M., Yoshimura M. // Solid State Jonics. 1996. Vol. 86–88. P. 1131–1149.
4. Badwal S. P. S., Ciacchi F. T., Rajendran S., Drennan J. // Solid State Ionics. 1998. Vol. 109, № 2–4. P. 167–186.
5. Arachi Y.., Asei T., Yamomoto O., Takeda Y., Kawate K., Tamakoshi C. // J. Electrochem. Soc. 2001. Vol. 148. № 5. P. A520–A523.
6. Караваев Ю. Н., Неуймин А. Д., Челнокова Е. В., Антонов Б. Д. // Ионный и электронный перенос в твердофазных системах: Сб.науч.тр. Свердловск: УрО АН СССР, 1992. С. 62–69.
7. Плинер С. Ю., Рутман Д. С., Дабижа А. А., Комоликов Ю. Н. // Огнеупоры. 1986. № 9. С. 19–20.
8. Караваев Ю. Н., Зырянов В. Г., Вовкотруб Э. Г. // Тез. докладов XI конференции по физической химии и электрохимии расплавленных и твердых электролитов. Екатеринбург, 1998. Т. 2. С. 144.
9. Караваев Ю. Н., Бурмакин Е. И., Мартемьянова З. С. // Там же. С. 117.
10. Караваев Ю. Н., Бурмакин Е. И. // Электрохимия. 1992. Т. 28, № 10. С. 1484–1489.
11. Караваев Ю. Н., Мартемьянова З. С. // Тез. докл. XI конф. по физической химии и электрохимии расплавленных и твердых электролитов. Екатеринбург, 1998. Т. II. С. 116.
12. Караваев Ю. Н., Неуймин А. Д., Плаксин С. В., Вовкотруб Э. Г. // Всерос. конф. «Химия твердого тела и функциональные материалы». Екатеринбург, 1008. С. 172.
13. Ruh R., Carrett H. Domogala R., Patel V. // J. Amer. Ceram. Soc. 1977. Vol. 60, № 9–10. P. 399–403.
14. Горелов В. П. // Тр. Ин-та электрохимии УНЦ АН СССР. 1978. Вып. 26. С. 69–75.
15. Караваев Ю. Н., Бурмакин Е. И. // Электрохим. энергетика. 2003. Т. 3, № 1. С. 21–25.
16. Караваев Ю. Н., Неуймин А. Д., Вовкотруб Э. Г. // Неорган. материалы. 2004. Т. 40, № 10. С. 1224–1229.
17. Караваев Ю. Н., Неуймин А. Д., Панкратов А. А. // Неорганические материалы. 1999. Т. 35, №12. С. 1482–1486.
18. Matsumoto R. L.K. // J. Amer. Ceram. Soc. 1985. Vol. 68, № 8. P. 123.