Cd|KOH|NiOOH

Zn|NH4CI|MnO2

Li|LiClO4|MnO2

Pb|H2SO4|PbO2

H2|KOH|O2

Degradation of matrix electrolyte under Molten Carbonate Fuel Cell environment

The change in phase composition, dispersibility and morphology of α-, β- and γ-lithium aluminates, which are the components of molten carbonate fuel cell were investigated after long exposure in Li/KCO3 (62/38 vol.%) eutectic melt under H2, H2 + CO2 (20-mol.%) and 0.33 O2 + 0.67 CO2 atmospheres at 650°C. α- , β- , γ- aluminates and their mixtures were found to transform into γ-phase under oxidative atmosphere. Under reducing atmosphere both α- and γ-phases always coexist. It was also found that degradation processes that is particle enlargement, decrease of specific surface and morphology change proceed at much higher rate in α- and β- phases than in γ-LiAlO2.

Literature

1. Broers G. H. J., Shenke M. // J. Amer. Chem. Soc. Natl. Meeting, Chicago, 1961. V. 111. P. 19.
2. Velden P. F. van // J. Trans. Faraday Soc. 1967. V. 63. P. 167.
3. Howaru S. A., Yau J. K., Anderson H. U. // J. Appl. Phys. 1989. V. 65. P. 1492.
4. Pat. 2469012 FR. МКИ C1 Н01М 8/14. Process for electrolyte structure with strontium titanate matrix for molten carbonate fuel cells.
5. Pat. 3,466,197 US. МКИ C1. H01 M8/02; H01 M8/14; H01 M27/16; H01 M27/20. Method of making carbonate electrolyte matrix and fuel cell therewith.
6. Бурмакин Е. И. и др. // Тр. ин-та электрохимии УФ АН СССР. 1977. Вып. 25. C. 75.
7. Бурмакин Е. И., Родигина Э. Н., Степанов Г. К., Синельников А. П. // Тр. ин-та электрохимии УФ АН СССР. 1975. Вып. 22. C. 84.
8. Broers G. H. J., Ballegoy H. J. van // 3me Journees intern. Etude piles combust. Bruxelles. 1969. P. 77.
9. Pat. US. 4,317, 865 МКИ C1. H01 M8/02. Ceria matrix material for molten carbonate fuel cell.
10. Wolcyrz M., Kepinski L. // J. Solid State Chem. 1992. V. 99. P. 409.
11. Castellanos M., West J. // Mater. Sci. 1979. V. 14. P. 450.
12. Pat. 0,090,141 EP. МКИ C1. H01 M8/02; H01 M8/14. Fused carbonate fuel cell.
13. Aubry J., Klein F. // Chim. Ind. – Gen. Chim. 1970. V. 103. P. 1641.
14. Maresio, Remeika // J. Chem. Phys., 1996. V. 44, № 44. P. 3143.
15. Dernier, Maines // Mater. Res. Bul. 1971. V. 6. P. 433.
16. Maresio // Acta Cryst. 1965. V. 19. P. 396.
17. Kinoshita K., Sim J. W., Ackerman J. P. // Mater. Res. Bul. Pergamon Press, Inc. Printed in the United States. 1978. V. 13. P. 445.
18. Низамова З. Р., Зырянов А. С., Александров К. А., Баталов Н. Н. // Фундаментальные проблемы электрохимической энергетики: Материалы V Междунар. конф. Саратов: Изд-во Cарат. ун-та, 2002. C. 122.
19. Vidya S. et al. // J. Power Sources. 2002. V. 112. P. 322.
20. Byker H. J. et al // High Temperature Fuel Cell and Development, Final Report for DOE Contract № EC-77-C-03–1485 for the Period June 1977 – September 1978 / Montana Energy and MHD Research and Development Institute. Butte, MT. 1978.
21. Eiichi Yazumoto, Kazuhito Haton, Takaharu Gamo // J. Power Sources. 1998. V. 71. P. 159.
22. Paetsch L. M., Doyon J. D., Farooque M. // Electrochem. Soc. 1993. V. 93. P. 88.
23. Suski L., Tarniowy M. // Mater. Sci. 2001. V. 36. P. 5119.
24. Takizawa K., Hagiwara A. // Power Sources. 2002. V. 109. P. 127.

стр. 21