литий-ионные аккумуляторы

Polymer binders for the electrodes of lithium batteries. Part 3. Conductive polymers

The third part of the review is devoted to polymer binders with electronic conductivity used to make composite electrodes for lithium electrochemical systems. Polymer semiconductors (“synthetic metals”), related polymers with additionally introduced functional groups, related copolymers and mixtures of polymers, as well as carbon chain polymers and copolymers with inсorporated polyaromatic fragments are considered.

The Polymer Binders for the Electrodes of Lithium Batteries. Part 2. Synthetic and Natural Polymers

The second part of the review describes the prospects of using alternative polymer binders for composite electrodes of lithium electrochemical systems. Possible options having been taken into account, the most popular commercially-available synthetic polymers with functional group (the ones forming aqueous solutions or dispersions predominantly) and water-soluble polymers of natural origin are considered. The versatility of such materials is their distinctive feature.

Polymer Binders for the Electrodes of Lithium Batteries. Part 1. Polyvinylidene Fluoride, its Derivatives and Other Commercialized Materials

The current situation in technology and developments in the field of polymer binders for composite electrodes of lithium electrochemical systems are discussed. A wide range of synthetic and natural polymers used for this purpose is considered. Emphasis is placed on commercially available materials, which form aqueous solutions or dispersions. The advantages of multifunctional polymer binders are demonstrated.

Prospective Composite Materials for Lithium~Ion Battery Cathodes Based on~Transition Metals Oxide and Rare Earth Elements Oxides Modified with Fullerene and Fluoride Ions

The review of cathode materials for lithium-ion batteries is presented, the analysis of advantages and application prospects of cathode materials on the basis of lithiated transition metals oxides is carried out. A method of heterovalent modification by ions of highly negative elements, lanthanum and its analogues for improving the electrochemical indices and stability of lithium manganese spinel is proposed. The effectiveness of fullerene, lithium fluoride, fullerenes halogen derivatives as modifying additive for MnO2 cathode materials has been noticed.

The Problems of Low-temperature Lithium-ion Batteries


The critical analysis of literature of last 15 years, concerning features of low-temperature behavior of lithium-ion batteries is presented. Some generalized approaches to the problem as well as the role of main polarization components at low temperatures; features of functioning of negative and positive electrodes are reviewed. Some low-temperature electrolytes are reviewed as well.


Properties of LiFePO4-based cathode material with additions of conducting polymer for Li–ion batteries

In this study, the electrochemical behavior and properties of the novel LiFePO4-based composite cathode material with a water-soluble binder LA-133 and a conductive polymer PEDOT:PSS (poly-3,4-ethylenedioxythiophene: polystyrenesulfonate) as an aqueous dispersion were studied. Using the conductive polymer in combination with a water-soluble binder LA-133 allows to reduce the proportion of electrochemically inactive components (up to 10\%) and thus to increase its specific capacity for a given weight of the active material.

Electrodes of lithium-ion batteries: some simple method for diagnostics of degradation at cycling

It is shown that an examination of reduced galvanostatic charge-discharge curves allows making preliminary conclusion on degradation mechanism upon cycling. If such degradation is due to loss of active material all normalized curves coincide. In the case of insulating films building up normalized curves are shifted along potential axis. Various structure changes result in qualitative change of curves shape.