Cd|KOH|NiOOH

Zn|NH4CI|MnO2

Li|LiClO4|MnO2

Pb|H2SO4|PbO2

H2|KOH|O2

каталитический слой

Effect of the catalyst layers structure on the pem fuel cell perfomance

Using complex models, including the solution percolation problem and electrochemical kinetics calculations are considered the features of a solid polymer fuel cell catalyst layers with a catalyst based on nanoscale carbon materials, including graphene nanowires. These calculations are consistent with the experimental data presented by optimizing the composition of the catalyst layers. It is shown that the addition of 20 wt.\% nanofibres graphene can reduce ohmic losses from the ion current and improve the performance of the fuel cell is 20%

Research and investigation of catalytic layers of proton-exchange membrane fuel cell

Composition and structure of proton-exchange membrane (PEM) fuel cell catalytic layers were investigated. The maximum FC efficiency was observed at the polymer content in a layer 25-30 vol.% at work on air and 30-35 vol. % at work on oxygen. At a variation of quantity of catalytic composition the maximum current density have been received at layer load 1.75 mg/sm2, thus decrease in it value in 2 times leads to falling of current density only on 10%.

Proton-exchange membrane fuel cell: structure of catalytic layer

Composition and structure of proton-exchange membrane fuel cell catalytic layers were investigated. Modelling of catalytic layer vas considered. This model allows to calculate layers containing particles of polymer and the catalyst of various forms and sizes. Dependence of conductivity and active layer surface area on concentration of polymer particles is shown. Best performance of a fuel cell is observed at the polymer concentration in a layer of 30–35% vol.