ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


Для цитирования:

Бурашникова М. М., Клюев В. В., Храмкова Т. С., Гриценко С. Д. Гибридные суперконденсаторы на основе водных электролитов // Электрохимическая энергетика. 2019. Т. 19, вып. 1. С. 3-?. DOI: 10.18500/1608-4039-2019-19-1-3-36, EDN: FSRHMZ

Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Полный текст в формате PDF(Ru):
(загрузок: 117)
Язык публикации: 
русский
Тип статьи: 
Научная статья
EDN: 
FSRHMZ

Гибридные суперконденсаторы на основе водных электролитов

Авторы: 
Бурашникова Марина Михайловна, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Храмкова Татьяна Сергеевна, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Гриценко Станислав Дмитриевич, Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
Аннотация: 

Представлен обзор современной литературы по гибридным суперконденсаторам (гибридным устройствам) в кислотном и щелочном электролитах. Основные тенденции в разработке современных гибридных устройств «углерод/PbO2» в сернокислом электролите, направленные на повышении плотности энергии, мощности, циклической долговечности, состоят в использовании положительного электрода из высокоаморфного или наноструктурированного диоксида свинца (обычно в виде тонкой пленки, нанопроволоки). Кроме того, для повышения удельных характеристик предлагается использовать углеродную подложку для положительного электрода. В устройствах «углерод/PbO2» могут быть использованы альтернативные электролиты, такие как метансульфоновая кислота. В щелочном электролите используются гибридные устройства на основе активированного угля и оксида/гидроксида никеля в качестве отрицательного и положительного электродов соответственно. Исследования в основном были направлены на получение оксида никеля различными способами, на использование различных подложек для осаждения оксида металла, а также использование электродов, где никель в положительном электроде частично замещен кобальтом, марганцем или цинком. Альтернативно никель в электроде может быть полностью заменен наноструктурированным гидроксидом кобальта или оксидом висмута.

Список источников: 

1. Brousse T., Belanger D., Long J. W. To Be or Not To Be Pseudocapacitive? // J. Electrochem. Soc. 2015. Vol. 162. P. A5185–A5189. DOI: https://doi.org/10.1149/2.0201505jes

2. Kёotz R., Carlen M. Principles and applications of electrochemical capaci-tors // Electrochim. Acta. 2000. Vol. 45. P. 2483–2498. DOI: https://doi.org/10.1016/S0013-4686(00)00345-6

3. Zheng J. P. The limitations of energy density of battery and doublelayer capacitor asymmetric cells // J. Electrochem. Soc. 2003. Vol. 150. P. A484–A492. DOI: https://doi.org/10.1149/1.1559067

4. Guillemet P., Dugas R., Scudeller Y., Brousse T. Electro-thermal analysis of a hybrid activated carbon/mno2 aqueous electrochemical capacitor // 207th Meeting of the ElectroChemical Society. Quebec City, Canada, May 15–20, 2005.

5. Дасоян М. А., Агуф И. А. Современная теория свинцового аккумулятора. Л. : Энергия, 1975. 312 с.

6. Pell W. G., Conway B. E. Peculiarities and requirements of asymmetric capacitor devices based on combination of capacitor and battery type electrodes // J. Power Sources. 2004. Vol. 136. P. 334–345. DOI: https://doi.org/10.1016/j.jpowsour.2004.03.021

7. Varakin I. N., Klementov A. D., Litvinenko S. V., Starodubtsev N. F., Stepanov A. B. New ultracapacitors developed by JSC ESMA for various applications // Proceedings of the 8th international seminar on double-layer capacitors and similar devices. Deerfield Beach, FL : Florida Educational Seminars Inc., December 1998.

8. Toupin M., Bґelanger D., Hill I. R., Quinn D. Performance of experimental carbon blacks in aqueous supercapacitors // J. Power Sources. 2005. Vol. 140. P. 203–210. DOI: https://doi.org/10.1016/j.jpowsour.2004.08.014

9. Vol’fkovich Yu. M., Shmatko P. A. High Energy Supercapacitors // Proceeding of the 8th international seminar on double layer capacitors and similar energy storage devices. deerfield beach, FL, 1998. Special issue.

10. Vol’fkovich Y. M., Serdyuk T. M. Electrochemical capacitors // Russ. J. Electrochem. 2002. Vol. 38. P. 935–958.

11. Moseley P. T., Nelson R. F., Hollenkamp A. F. The role of carbon in valve-regulated lead–acid battery technology // J. Power Sources. 2006. Vol. 157. P. 3–10. DOI: https://doi.org/10.1016/j.jpowsour.2006.02.031

12. Cericola D., Kotz R. Hybridization of rechargeable batteries and electrochemical capacitors : Principles and limits // Electrochim. Acta. 2012. Vol. 72. P. 1–17. DOI: https://doi.org/10.1016/j.electacta.2012.03.151

13. Chen H., Cong T. N., Yang W., Tan C., Li Y., Ding Y. Progress in electrical energy storage system: A critical review // Prog. Nat. Sci. 2009. Vol. 19. P. 291–312. DOI: https://doi.org/10.1016/j.pnsc.2008.07.014

14. Kazaryan S. A., Razumov S. N., Litvinenko S. V., Kharisov G. G., Kogan V. I. Mathematical model of heterogeneous electrochemical capacitors and calculation of their parameters // J. Electrochem. Soc. 2006. Vol. 153. P. A1655–А1671. DOI: https://doi.org/10.1149/1.2212057

15. Ni J., Wang H., Qu Y., Gao L. PbO2 electrodeposited on graphite for hybrid supercapacitor applications // Phys. Scr. 2013. Vol. 87, № 4. 045802. DOI: https://doi.org/10.1088/0031-8949/87/04/045802

16. Yu N., Gao L., Zhao S., Wang Z. Electrodeposited PbO2 thin film as positive electrode in PbO2/AC hybrid capacitor // Electrochim. Acta. 2009. Vol. 54. P. 3835–3841. DOI: https://doi.org/10.1016/j.electacta.2009.01.086

17. Perret P., Brousse T., Bґelanger D., Guay D. Electrochemical template synthesis of ordered lead dioxide nanowires // J. Electrochem. Soc. 2009. Vol. 156. P. A645–A651. DOI: https://doi.org/10.1149/1.3139024

18. Pletcher D., Wills R. A novel flow battery: a lead acid battery based on an electrolyte with soluble lead(II) : Part II. Flow cell studies // Phys. Chem. Chem. Phys. 2004. Vol. 6. P. 1779–1785. DOI: https://doi.org/10.1039/B401116C

19. Hazza A., Pletcher D., Wills R. A novel flow battery–A lead acid battery based on an electrolyte with soluble lead(II) : IV. The influence of additives // J. Power Sources. 2005. Vol. 149. P. 103–111. DOI: https://doi.org/10.1016/j.jpowsour.2005.01.049

20. Li X., Pletcher D., Walsh F. C. A novel flow battery : A lead acid battery based on an electrolyte with soluble lead(II): Part VII. Further studies of the lead dioxide positive electrode // Electrochim. Acta. 2009. Vol. 54. P. 4688–4695. DOI: https://doi.org/10.1016/j.electacta.2009.03.075

21. Pletcher D., Wills R. A novel flow battery–A lead acid battery based on an electrolyte with soluble lead(II) : III. The influence of conditions on battery per-formance // J. Power Sources. 2005. Vol. 149. P. 96–102. DOI: https://doi.org/10.1016/j.jpowsour.2005.01.048

22. Pletcher D., Zhou H., Kear G., Low C. T. J., Walsh F. C., Wills R. G. A. A novel flow battery–A lead-acid battery based on an electrolyte with soluble lead(II) : V. Studies of the lead negative electrode // J. Power Sources. 2008. Vol. 180. P. 621–629. DOI: https://doi.org/10.1016/j.jpowsour.2008.02.024

23. Pletcher D., Zhou H., Kear G., Low C. T. J., Walsh F. C., Wills R. G. A. A novel flow battery–A lead-acid battery based on an electrolyte with soluble lead (II) : Part VI. Studies of the lead dioxide positive electrode // J. Power Sources. 2008. Vol. 180. P. 630–634. DOI: https://doi.org/10.1016/j.jpowsour.2008.02.025

24. Perret P., Khani Z., Brousse T., Belanger D., Guay D. Carbon/PbO2 asymmetric electrochemical capacitor based on methanesulfonic acid electrolyte // Electrochim. Acta. 2011. Vol. 56. P. 8122–8128. DOI: https://doi.org/10.1016/j.electacta.2011.05.125

25. Kopczynski K., Kolanowski L., Baraniak M., Lota K., Sierczynska A., Lota G. Highly amorphous PbO2 as an electrode in hybrid electrochemical capacitors // Current Applied Physics. 2017. Vol. 17, iss. 1. P. 66–71. DOI: https://doi.org/10.1016/j.cap.2016.10.021

26. Wenli Zhang, Haibo Lin, Haishen Kong, Haiyan Lu, Zhe Yang, Tingting Liu. High energy density PbO2/activated carbon asymmetric electrochemical capacitor based on lead dioxide electrode with three-dimensional porous titanium substrate // International Journal of Hydrogen Energy. 2014. Vol. 39, iss. 30. P. 17153–17161. DOI: https://doi.org/10.1016/j.ijhydene.2014.08.039

27. Grgur B. N., Zeradjanin A., Gvozdenovic M. M., Maksimovic M. D., Trisovic T. Lj., Jugovic B. Z. Electrochemical characteristics of rechargeable polyaniline/lead dioxide cell // J. Power Sources. 2012. Vol. 217. P. 193–198. DOI: https://doi.org/10.1016/j.jpowsour. 2012.06.025

28. Petersson I., Ahlberg E. Oxidation of electrodeposited lead–tin alloys in 5M H2SO4 // J. Power Sources. 2000. Vol. 91. P. 143–149. DOI: https://doi.org/10.1016/S0378-7753(00)00459-6

29. Lam L. T., Louey R. Development of ultra-battery for hybrid-electric vehicle applications // J. Power Sources. 2006. Vol. 158. P. 1140–1148. DOI: https://doi.org/10.1016/j.jpowsour.2006.03.022

30. Lam L. T., Louey R., Haigh N. P., Lim O. V., Vella D. G., Phyland C. G., Vu L. H., Furukawa J., Takada T., Monma D., Kano T. VRLA ultrabattery for high-rate partial-state-of-charge operation // J. Power Sources. 2007. Vol. 174. P. 16–29. DOI: https://doi.org/10.1016/j.jpowsour.2007.05.047

31. Cooper A., Furakawa J., Lam L., Kellaway M. The UltraBattery-a new battery design for a new beginning in hybrid electric vehicle energy storage // J. Power Sources. 2009. Vol. 188. P. 642–649. DOI: https://doi.org/10.1016/j.jpowsour.2008.11.119

32. Furukawa J., Takada T., Monma D., Lam L. T. Further demonstration of the VRLA-type UltraBattery under medium-HEV duty and development of the flooded-type UltraBattery for micro-HEV applications // J. Power Sources. 2010. Vol. 195. P. 1241–1245. DOI: https://doi.org/10.1016/j.jpowsour.2009.08.080

33. Wu Zhang, Yao Hui Qu, Li Jun Gao. Performance of PbO2/activated carbon hybrid supercapacitor with carbon foam substrate // Chinese Chemical Letters. 2012. Vol. 23, iss. 5. P. 623–626. DOI: https://doi.org/10.1016/j.cclet.2012.03.013

34. Conway B. E., Pell W. G. Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices // J. Solid State Electrochem. 2003. Vol. 7. P. 637–644. DOI: https://doi.org/10.1007/s10008-003-0395-7

35. Yu N., Gao L. Electrodeposited PbO2 thin film on Ti electrode for application in hybrid supercapacitor // Electrochem. Commun. 2009. Vol. 11. P. 220–222.

36. Axion Power International Inc. : [site]. URL: http://www.axionpower.com/ https://investorshub.advfn.com/Axion-Power-International-Inc-AXPWQ-3854/ http://www.axionpower.com/profiles/investor/fullpage.asp?f=1&BzID=1933&to=cp&Nav=0&LangID=1&s=0&ID=10294 (дата обращения: 27.11.2018).

37. Beliakov A. L., Brintsev A. M. Development and Application of Combined Capacitors : Double Electric Layer–Pseudocapacity // Proceedings of the 7th International Seminar on Double-Layer Capacitors and Similar Energy Storage Devices. Deerfield Beach, FL : Florida Educational Seminars Inc., December 1997. Vol. 7.

38. Beliakov A. L. Technological aspects of reliability of electrochemical capacitors being used at heavy-duty operating conditions // Proceedings of the 8th International Seminar on Double-Layer Capacitors and Similar Devices. Deerfield Beach, FL : Florida Educational Seminars Inc., December 1998.

39. Varakin I. N., Klementov A. D., Litvinenko S. V., Starodubtsev N. F., Stepanov A. B. New Ultracapacitors Developed by JSC ESMA for Various Applications // Proceedings of the 8th International Seminar on Double-Layer Capacitors and Similar Devices. Deerfield Beach, FL : Florida Educational Seminars Inc., December 1998.

40. Stepanov A. B., Varakin I. N., Menukhov V. V. Double layer capacitor. US Patent 5986876, 1999. URL: https://patents.google.com/patent/US5986876A/en (дата обращения: 10.01.2019).

41. Burke A. Ultracapacitors : why, how, and where is the echnology // J. Power Sources. 2000. Vol. 91. P. 37–50. DOI: http://doi.org/10.1016/S0378-7753(00)0048057

42. Вольфкович Ю. М., Сердюк Т. М. Электрохимические конденсаторы // Электрохимическая энергетика. 2001. Т. 1, № 4. С. 14–28.

43. Беляков А. И. Электрохимические суперконденсаторы : текущее состояние и проблемы развития // Электрохимическая энергетика. 2006. Т.6, № 3. С. 146–149.

44. Inoue H., Namba Y., Higuchi E. Preparation and haracterization of Ni-based positive electrodes for use in aqueous electrochemical capacitors // J. Power Sources. 2010. Vol. 195. P. 6239–6244. DOI: http://doi.org/10.1016/j.jpowsour.2009.12.018

45. Zhao Y., Lai Q. Y., Hao Y. J., Ji X. Y. Study of electrochemical performance for AC/(Ni1/3Co1/3Mn1/3)(OH)2 // J. Alloys Compd. 2009. Vol. 471. P. 466–469. DOI: http://doi.org/10.1016/j.jallcom.2008.03.131

46. Wang H., Gao Q., Hu J. Asymmetric capacitor based on superior porous Ni–Zn–Co oxide/hydroxide and carbon electrodes // J. Power Sources. 2010. Vol. 195. P. 3017–3024. DOI: http://doi.org/10.1016/j.jpowsour.2009.11.059

47. Liang Y.-Y., Li H.-L., Zhang X.-G. A novel asymmetric capacitor based on Co(OH)2/USY composite and activated carbon electrodes // Mater. Sci. Eng. A. 2008. Vol. 473. P. 317–322. DOI: http://doi.org/10.1016/j.msea.2007.03.087

48. Kong L.-B., Liu M., Lang J.-W., Luo Y.-C., Kang L. Asymmetric supercapacitor based on loose-packed cobalt hydroxide nanoflake materials and activated carbon // J. Electrochem. Soc. 2009. Vol. 156, iss. 12. P. A1000–A1004. DOI: http://doi\,:10.1149/1.3236500

49. Gujar T. P., Shinde V. R., Lokhande C. D., Han S.-H. Electrosynthesis of Bi2O3 thin films and their use in electrochemical supercapacitors // J. Power Sources. 2006. Vol. 161. P. 1479–1485. DOI: http://doi.org/10.1016/j.jpowsour.2006.05.036

50. Kolathodi M. S., Palei M., Natarajan T. S. Electrospun NiO nanofibers as cathode materials for high performance asymmetric supercapacitors // J. Mater. Chem. A. 2015. Vol. 3. P. 7513–7522. DOI: http://doi.org//10.1039/C4TA07075E

51. Ren X., Guo C., Xu L., Li T., Hou L., Wei Y. Facile Synthesis of Hierarchical Mesoporous Honeycomb-like NiO for Aqueous Asymmetric Supercapacitors // ACS Appl. Mater. Interfaces. 2015. Vol. 7. P. 19930–19940. DOI: http://doi.org/10.1021/acsami.5b04094

52. Yan J., Fan Z., Sun W., Ning G., Wei T., Zhang Q., Zhang R., Zhi L., Wei F. Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density // Adv. Funct. Mater. 2012. Vol. 22. P. 2632–2641. DOI: http://doi.org/10.1002/adfm.201102839

53. Ji J., Zhang L. L., Ji H., Li Y., Zhao X., Bai X., Fan X., Zhang F., Ruoff R. S. Nanoporous Ni(OH)2 thin film on 3D ultrathin-graphite foam for asymmetric supercapacitor // ACS Nano. 2013. Vol. 7. P. 6237–6243. DOI: http://doi.org/10.1021/nn4021955

54. Peng S., Li L., Wu H. B., Madhavi S., Lou X. W. D. Controlled growth of NiMoO4 nanosheet and nanorod arrays on various conductive substrates as advanced electrodes for asymmetric supercapacitors // Adv. Energy Mater. 2015. Vol. 5, iss. 2. P. 1401172. DOI: https://doi.org/10.1002/aenm.201401172

55. Cai F., Kang Y., Chen H., Chen M., Li Q. Hierarchical CNT@NiCo2O4 core-shell hybrid nanostructure for high-performance supercapacitors // J. Mater. Chem. A. 2014. Vol. 2. P. 11509–11515. DOI: http://doi.org//10.1039/C4TA01235F

56. Dai C. S., Chien P. Y., Lin J. Y., Chou S. W., Wu W. K., Li P. H., Wu K. Y., Lin T. W. Hierarchically structured Ni3S2/carbon nanotube composites as high performance cathode materials for asymmetric supercapacitors // ACS Appl. Mater. Interfaces. 2013. Vol. 5. P. 12168–12174. DOI: http://doi.org/10.1021/am404196s

57. Wang D.-W., Li F., Cheng H.-M. Hierarchical porous nickel oxide and carbon as electrode materials for asymmetric supercapacitor // J. Power Sources. 2008. Vol. 185. P. 1563–1568. DOI: https://doi.org/10.1016/j.jpowsour.2008.08.032

58. Казаринов И. А., Волынский В. В., Клюев В. В., Новосёлов М. А. От щелочных аккумуляторов к суперконденсаторам. Оксидноникелевый электрод : теория процессов и современные технологии его изготовления // Электрохимическая энергетика. 2017. Т. 17, № 4. С. 173–224. DOI: https://doi.org/10.18500/1608-4039-2017-17-4-173-224

59. Park J. H., Park O. O., Shin K. H., Jin C. S., Kim J. H. An electrochemical capacitor based on a Ni(OH)2/activated carbon composite electrode // Electrochem. Solid-State Lett. 2002. Vol. 5, iss. 2. P. H7–H10. DOI: http://doi.org/10.1149/1.1432245

60. Jun Yan, Zhuangjun Fan, Wei Sun, Guoqing Ning, Tong Wei, Qiang Zhang, Rufan Zhang, Linjie Zhi, Fei Wei. Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density // Adv. Funct. Mater. 2012. Vol. 22. P. 2632–2641. DOI: http://doi.org/10.1002/adfm.201102839

61. Feng Luan, Gongming Wang, Yichuan Ling, Xihong Lu, Hanyu Wang, Yexiang Tong, Xiao-Xia Liu, Yat Li. High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode // Nanoscale. 2013. Vol. 5. P. 7984–7990. DOI: http://doi.org/10.1039/c3nr02710d www.rsc.org/nanoscale

62. Zhe Tang, Chun-hua Tang, Hao Gong. A high energy density asymmetric supercapacitor from nano-architectured Ni(OH)2/carbon nanotube electrodes // Adv. Funct. Mater. 2012. Vol. 22. P. 1272–1278. DOI: http://doi.org/10.1002/adfm.201102796

63. Hailiang Wang, Yongye Liang, Tissaphern Mirfakhrai, Zhuo Chen, Hernan Sanchez Casalongue, Hongjie Dai. Advanced asymmetrical supercapacitors based on graphene hybrid materials // Nano Res. 2011. Vol. 4, iss. 8. P. 729–736. DOI: http://doi.org/10.1007/s12274-011-0129-6

64. Wei Yu, Xinbing Jiang, Shujiang Ding, Ben Q. Li. Preparation and electrochemical characteristics of porous hollow spheres of NiO nanosheets as electrodes of supercapacitors // J. Power Sources. 2014. Vol. 256. P. 440–448. DOI: http://doi.org/10.1016/j.jpowsour.2013.12.110

65. Li R., Lin Z., Ba X., Li Y., Ding R., Liu J. Integrated copper–nickel oxide mesoporous nanowire arrays for high energy density aqueous asymmetric supercapacitors // Nanoscale Horiz. 2016. Vol. 1, iss. 2. P. 150–155. DOI: http://doi.org/10.1039/C5NH00100E

66. Hsing-Chi Chien, Wei-Yun Cheng, Yong-Hui Wang, Shih-Yuan Lu. Ultrahigh specifi c capacitances for supercapacitors achieved by nickel cobaltite/carbon aerogel composites // Adv. Funct. Mater. 2012. Vol. 22, iss. 23. P. 5038–5043. DOI: http://doi.org/10.1002/adfm.201201176

67. Linrui Hou, Ruiqi Bao, Muhammad Rehan, Liuniu Tong, Gang Pang, Xiaogang Zhang, Changzhou Yuan. Uniform hollow mesoporous nickel cobalt sulfide microdumbbells : a competitive electrode with exceptional gravimetric/volumetric pseudocapacitance for high-energy-density hybrid superapacitors // Adv. Electron. Mater. 2017. Vol. 3, iss. 2, 1600322. DOI: http://doi.org/10.1002/aelm.201600322

68. Hou L., Shi Y., Zhu S., Pang G., Rehan M., Zhang X., Yuan C. Hollow mesoporous hetero-NiCo2S4/Co9S8 submicro-spindles : unusual formation and appealing pseudocapacitance towards hybrid supercapacitors // J. Mater. Chem. A. 2017. Vol. 5. P. 133–144. DOI: http://doi.org/10.1039/C6TA05788H

69. Ferreira C. S., Passos R. R., Pocrifka L. A. Synthesis and properties of ternary mixture of nickel/cobalt/tin oxides for supercapacitors // J. Power Sources. 2014. Vol. 271. P. 104–107. DOI: http://doi.org/10.1016/j.jpowsour.2014.07.164

70. Wang X., Li M., Chang Z., Wang Y., Chen B., Zhang L., Wu Y. Orientated Co3O4 nanocrystals on MWCNTs as superior battery-type positive electrode material for a hybrid capacitor // J. Electrochem. Soc. 2015. Vol. 162. P. A1966–A1971. DOI: http://doi.org/10.1149/2.0041511jes

71. Tang C., Tang Z., Gong H. Hierarchically Porous Ni-Co Oxide for High Reversibility Asymmetric Full-Cell Supercapacitors // J. Electrochem. Soc. 2012. Vol. 159. P. A651–A656. DOI: http://doi.org/10.1149/2.074205jes

72. Yu X. Z., Lu B. G., Xu Z. Super long-life supercapacitors based on the construction of nanohoneycomb-like strongly coupled CoMoO4–3D graphene hybrid electrodes // Adv. Mater. 2014. Vol. 26, iss. 7. P. 1044–1051. DOI: http://doi.org/10.1002/adma.201304148

73. Zeng Y., Han Y., Zhao Y., Zeng Y., Yu M., Liu Y., Tang H., Tong Y., Lu X. Advanced Ti-doped Fe2O3@PEDOT core/shell anode for high-energy asymmetric supercapacitors // Adv. Energy Mater. 2015. Vol. 5. 1402176. DOI: https://doi.org/10.1002/aenm.201402176

74. Lu X. F., Chen X. Y., Zhou W., Tong Y. X., Li G. R. ?-Fe2O3@PANI Core–shell nanowire arrays as negative electrodes for asymmetric supercapacitors ACS // Appl. Mater. Interfaces. 2015. Vol. 7. P. 14843–14850. DOI: http://doi.org/10.1021/acsami.5b03126

75. Lin T. W., Dai C. S., Hung K. C. High energy density asymmetric supercapacitor based on NiOOH/Ni3S2/3D graphene and Fe3O4/graphene composite electrodes // Sci. Rep. 2014. Vol. 4. 7274. DOI: http://doi.org/10.1038/srep07274

76. Wang Y., Shen C., Niu L., Li R., Guo H., Shi Y., Li C., Liu X., Gong Y. Hydrothermal synthesis of CuCo2O4/CuO nanowire arrays and RGO/Fe2O3 composites for high-performance aqueous asymmetric supercapacitors // J. Mater. Chem. A. 2016. Vol. 4. P. 9977–9985. DOI: http://doi.org//10.1039/C6TA02950G

77. Yang S., Song X., Zhang P., Sun J., Gao L. Self-assemblend ?-Fe2O3 mesocrystals/graphene nanohybrid for enhanced electrochemical capacitors // Small. 2014. Vol. 10. P. 2270–2279.

78. Wang D., Li Y., Wang Q., Wang T. Nanostructured Fe2O3–graphene composite as a novel electrode material for supercapacitors // J. Solid State Electrochem. 2012. Vol. 16. P. 2095–2102. DOI: https://doi.org/10.1007/s10008-011-1620-4

79. Li R. Z., Wang Y. M., Zhou C., Wang C., Ba X., Li Y. Y., Huang X. T., Liu J. P. Carbon-stabilized high-capacity ferroferric oxide nanorod array for flexible solid-state alkaline battery–supercapacitor hybrid device with high environmental suitability // Adv. Funct. Mater. 2015. Vol. 25. P. 5384–5394. DOI: https://doi.org/10.1002/adfm.201502265

80. Gujar T. P., Shinde V. R., Lokhande C. D., Han S.-H. Electrosynthesis of Bi2O3 thin films and their use in electrochemical supercapacitors // J. Power Sources. 2006. Vol. 161. P. 1479–1485. DOI: https://doi.org/10.1016/j.jpowsour.2006.05.036

81. Li L., Zhang X., Zhang Z., Zhang M., Cong L., Pan Y., Lin S. A bismuth oxide nanosheet-coated electrospun carbon nanofiber film : a free-standing negative electrode for flexible asymmetric supercapacitors // J. Mater. Chem. A. 2016. Vol. 4. P. 16635–16644. DOI: http://doi.org//10.1039/C6TA06755G

82. Su H., Cao S., Xia N., Huang X., Yan J., Liang Q., Yuan D. Controllable growth of Bi2O3 with rod-like structures via the surfactants and its electrochemical properties // J. Appl. Electrochem. 2014. Vol. 44. P. 735–740. DOI: https://doi.org/10.1007/s10800-014-0681-3

83. Senthilkumar S. T., Selvan R. K., Ulaganathan M., Melo J. S. Fabrication of Bi2O3||AC asymmetric supercapacitor with redox additive aqueous electrolyte and its improved electrochemical performances // Electrochim. Acta. 2014. Vol. 115. P. 518–524. DOI: https://doi.org/10.1016/j.electacta.2013.10.199

84. Zuo W., Zhu W., Zhao D., Sun Y., Li Y., Liu J., Lou X. W. Bismuth oxide : a versatile high-capacity electrode material for rechargeable aqueous metal-ion batteries // Energy Environ. Sci. 2016. Vol. 9. P. 2881–2891. DOI: https://doi.org/10.1039/C6EE01871H

85. Qu D., Wang L., Zheng D., Xiao L., Deng B., Qu D. An asymmetric supercapacitor with highly dispersed nano-Bi2O3 and active carbon electrodes // J. Power Sources. 2014. Vol. 269. P. 129–135. DOI: https://doi.org/10.1016/j.jpowsour.2014.06.084

Поступила в редакцию: 
14.01.2019
Принята к публикации: 
28.01.2019
Опубликована: 
25.03.2019