Cd|KOH|NiOOH

Zn|NH4CI|MnO2

Li|LiClO4|MnO2

Pb|H2SO4|PbO2

H2|KOH|O2

/The effect of modified absorbtive glass mat separators on the efficiency of hydrogen ionization in lead-acid battery mock-ups

The influence of porous structure of the absorptive glass mats manufactured by «Hollingsworth&Vose» (thickness 2.8 mm) and BernardDumas» (thickness 3.0 mm), modified by impregnation with polymeric emulsions on the basis of polyvinylidene fluoride (KYNAR), polyvinylpyrrolidone copolymer with styrene (PVS) and polytetrafluoroethylene (Tf), on the efficiency of ionization of hydrogen in lead-acid battery mock-ups. The use of polymer modified emulsions separators from absorbtive glass mat allows to increase the ionization rate of hydrogen on lead-dioxide electrode.

Literature

1. Khomskaya E. A., Kazarinov I. A., Semykin A. V., Gorbachyova N. F. Makrokinetika gazovyh ciklov v germetichnyh akkumuljatorah. [Gas cycle macrokinetics in hermetical batteries]. Saratov, Saratov University Press Publ., 2008. 132 p. (in Russian).
2. Gigova A. Investigation of the porous structure of battery separators using various porometric methods. J. Power Sources, 2006, vol.158, pp. 1054–1061.
3. Zguris G. C. A broad look at separator material technology for valve-regulated lead/acid batteries. J. Power Sources, 1998, vol. 73, pp. 60–64.
4. Ball R. J., Evans R., Stevens R. Characterisation of separator papers for use in valve regulated lead/acid batteries. J. Power Sources, 2002, vol. 104, pp. 208–220.
5. Jena A. K., Gupta K. M. In-plane compression porometry of battery separators. J. Power Sources, 1999, vol. 80, pp. 46–52.
6. Brilmyer G. H. Impact of separator design on battery performance in traction applications. J. Power Sources, 1999, vol. 78, pp. 68–72.
7. Ferreira A. L. Investigation into oxygen permeability of different microporous separators. Proceedings of the LABAT'96 Conference, Varna, Bulgaria, 1996, p. 142 (abstract no. 41).
8. McGregor K., Ozgum H., Urban A. J., Zguris G. C. Essential characteristics for separators in valve-regulated lead-acid batteries. J. Power Sources, 2002, vol. 111, pp. 288–303.
9. Kazarinov I. A., Burashnikova M. M., Khomskaya E. A., Kadnikova N. V. A universal way for gas-liquid flow control in the design of hermetical lead-acid batteries. J. Power Sources, 2012, vol. 209, pp. 289–294.
10. Pavlov D., Ruevski S. I., Naidenov V. B., Mircheva V. V., Petkova G. A., Dimitrov M. K., Rogachev T. V., Cherneva-Vasileva M. H.. Valve-regulated lead-acid cells and batteries and separators used in such cells and batteries. International Patent Application (PCT) WO 99, 01902 (1997).
11. Pavlov D., Naidenov V., Raevski S., Mircheva V., Cherneva M. New modified AGM separator and its influence on the performance of VRLA batteries. J. Power Sources, 2003, vol. 113, pp. 209–227.
12. Naidenov V., Pavlov D., Cherneva M. Three-layered absorptive glass mat separator with membrane for application in valve-regulated lead-acid batteries. J. Power Sources, 2009, vol. 192, pp. 730–735.
13. Ioffe I. I., Reshetov V. A., Dobrotvorsky A. M. Raschetnye metody v prognozirovanii aktivnosti geterogennyh katalizatorov [Calculation methods in forecasting of the activity of heterogeneous catalysts] Leningrad, Khimiya Publ., 1977. (in Russian).
14. Volfkovich Yu. M., Bagockij V. S., Sosenkin V. E., Shkolnikov E. I. Metody jetalonnoj porometrii i vozmozhnye oblasti ih primeneija v jelektrohimii [Standard porosimetry methods and their possible application fields in electrochemistry]. Elektrokhimiya, 1980, vol. 16, pp. 1620–1653 (in Russian).

стр. 206
Heading: