The application of graphene in biofuel cells

This work considers the application of graphene while forming the electrodes in biofuel cells. Graphene displays a number of important characteristics including first of all good mechanical properties, high thermal conductivity, high specific surface area, biocompatibility, structural peculiarities of a molecule, is available for chemical modification of the structure. Fabrication, properties of graphene and its oxide were considered and the peculiarities of the application of graphene as a basic material for electrodes in biofuel cells are also discussed.


1. Fialkov A. S. Uglerod, mezhsloevye soedinenija i kompozity na ego osnove [Carbon interlayer compound and composites based on its]. M., Aspekt Press, 1997, 720 p.
2. Ubbellohde A. R., Lewis F. A. Grafite and its crystal compounds. Oxford, Clarendon Press, 1960. 217 p.
3. Chernysh I. G., Karpov I. I., Prihod'ko V. P., Shaj V. M. Fiziko-himicheskie svojstva grafita i ego soedinenij  [Physicochemical properties of graphite and its compounds]. Kiev, Naukova Dumka, 1990, 200 p.
4. Lopez-Gonzalez J., Martin-Rodriguez A., Rodrнguez-Reinoso F. Kinetics of the formation of Graphite oxide. Carbon, 1975, vol. 13, no. 6, pp. 461–464.
5. Hontoria-Lycas C., Lopez-Peinado A. J., Lopez-Gonzalez J., Rojas-Cervantes D. De, M.L, Martin-Avanda R. M. Study of oxygen-containing groups in series of graphite oxides : physical and chemical characterization. Carbon, 1995, vol. 33, no. 11, pp. 1585–1592.
6. Brodie. B. C. Sur le poids atomique du graphite. Ann. Chim. Phys., 1860, vol. 59, pp. 466–472.
7. Staudenmaier L. Verfahren zur Darstellung der Graphitsaure. Ber. Deut. Chem. Ges., 1898, no. 31, pp. 1481–1499.
8. Hummers W. S., Offeman R. E. Preparation of graphitic oxide. J. Amer. Chem. Soc., 1958, vol. 80, no. 6, pp. 1339–1339.
9. Si Y., Samulski E. T. Synthesis of water soluble grapheme. Nano Lett., 2008, vol. 8, no. 6, pp. 1679-1682.
10. Mkhoyan K. A., Contryman A. W., Silcox J., Stewart D. A., Eda G., Mattevi C., Miller S., Chhowalla M. Atomic and Electronic Structure of Graphene-Oxide. Nano Lett., 2009, vol. 9, no. 3, pp. 1058–1063.
11. Szabу T., Berkesi O., Forgу P., Josepovits K., Sanakis Y., Petridis D., Dйkбny I. Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mater., 2006, vol. 18, no. 11, pp. 2740–2749.
12. Park S., Lee K.-S, Bozoklu G., Cai W, Nguyen S. T., Ruoff R. S. Graphene oxide papers modified by divalent ions – enhancing mechanical properties via chemical cross-linking. ACS Nano., 2008, vol. 2, no. 3, pp. 572–578.
13. Paredes J. I., Villar-Rodil S., Martinez-Alonso A., Tascon J. M. D. Graphene oxide dispersions in organic solvents. Langmuir, 2008, vol. 24, no. 19, pp. 10560–10564.
14. Stankovich S., Dikin D. A., Piner R. D., Kohlhaas K. A., Kleihammes A., Jia Wu Y. Y., Nguyen S. T., Ruoff R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007, vol. 45, no. 7, pp. 1558–1565.
15. Wang Sh., Tang L. A., Bao Q., Lin M., Deng S., Goh B. M., Loh K. P. Room-temperature synthesis of soluble carbon nanotubes by the sonication of graphene oxide nanosheets. J. Amer. Chem. Soc., 2009, vol. 131, pp. 16832–16837.
16. Lomeda J. R., Doyle C. D., Kosynkin D. V., Hwang W.-F., Tour J. M. Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J. Amer. Chem. Soc., 2008, vol. 130, no. 48, pp. 16201–16206.
17. Lin, Yao Y., Li Zh., Liu Y., Li Zh., Wong Ch.-P. Solvent-Assisted Thermal Reduction of Graphite Oxide. J. Phys. Chem. C., 2010, vol. 114, no. 35, pp. 14819–14825.
18. Yang, Pan X., Huang F., Li K. Fabrication of High-Concentration and Stable Aqueous Suspensions of Graphene Nanosheets by Noncovalent Functionalization with Lignin and Cellulose Derivatives. J. Phys. Chem. С., 2010, vol. 114, no. 9, pp. 3811–3816.
19. Gao J., Liu F., Liu Y., Ma N., Wang Zh., Zhang X. Environment-Friendly Method To Produce Graphene That Employs Vitamin C and Amino Acid. Chem. Mater., 2010, vol. 22, no. 7, pp. 2213–2218.
20. Boehm H. P., Eckel M., Scholz W. Uber den Bildungsmechanismus des Graphitoxids. Anorg. Allg. Chem., 1967, Bd. 353, S. 236–242.
21. Li X., Zhang G., Bai X., Sun X., Wang X., Wang E., Dai H. Highly conducting graphene sheets and Langmuir-Blodgett films. Nature Nanotech., 2008, vol. 3, no. 9, pp. 538–542.
22. Gomez-Navarro C., Meyer J. C., Sundaram R. S., Chuvilin A., Kurasch S., Burghard M., Kern K., Kaiser U. Atomic Structure of Reduced Graphene Oxide. Nano Lett., 2010, vol. 10, no. 4, pp. 1144–1148.
23. Paredes J. I., Villar-Rodil S., Sol\imath s-Fernandez P., Mart\imath nez-Alonso A., Tascon J. M. D. Atomic Force and Scanning Tunneling Microscopy Imaging of Graphene Nanosheets Derived from Graphite Oxide. Langmuir, 2009, vol. 25, no. 10, pp. 5957–5968.
24. Pan D., Wang S., Zhao B., Wu M., Zhang H., Wang Y., Li Jiao Zh. Storage Properties of Disordered Graphene Nanosheets. Chem. Mater., 2009, vol. 21, no. 14, pp. 3136–3142.
25. Gуmez-Navarro C., Burghard M., Kern K. Elastic properties of chemically derived single graphene sheets. Nano Lett., 2008, vol. 8, no. 7, pp. 2045–2049.
26. Kundhikanjana W., Lai K., Wang H., Dai H., Kelly M. A., Shen Z. Hierarchy of Electronic Properties of Chemically Derived and Pristine Graphene Probed by Microwave Imaging. Nano Lett., 2009, vol. 9, no. 11, pp. 3762–3765.
27. Ferrari A. C. Raman spectroscopy of graphene and graphite : Disorder, electron-photon coupling, doping and nonadiabatic effects. Solid State Comm., 2007, vol. 143, pp. 47–57.
28. Obraztsova E. A., Osadchy A. V., Obraztsova E. D., Lefrant S., Yaminsky I. V. Statistical analysis of atomic force microscopy and Raman spectroscopy data for estimation of graphene layer numbers. Phys. Stat. Sol. B., 2008, vol. 245, no. 10, pp. 2055–2059.
29. Stolyarova E., Rim K. T., Ryu S., Maultzsch J., Kim P., Brus L. E., Heinz T. F., Hybertsen M. S., Flynn G. W. High resolution scanning tunneling mesoscopic imaging of graphene sheets on an insulating surface. PNAS, 2007, vol. 104, no. 22, pp. 9209–9212.
30. Leech D., Kavanagh P., Schuhmann W. Enzymatic fuel cells : Recent progress. Electrochim. Acta, 2012, vol. 84, pp. 223–234.
31. Bullen R. A., Arnot T. C, Lakeman J. B., Walsh F. C. Biofuel cells and their development. Biosens. Bioelectron, 2006, vol. 2, pp. 12015–2045.
32. Tarasevich M. R., Yaropolov A. I., Bogdanovskaya V. A., Varfolomeev S. D. Electrocatalysis of a cathodic oxygen reduction by laccase. Bioelectroch. Bioener., 1979, vol. 6, pp. 393–403.
33. Scida K., Stege P. W., Haby G., Messina G. A., Garcнa C. D. Recent applications of carbon-based nanomaterials in analytical chemistry : critical review. Anal. Chim. Acta, 2011, vol. 691, pp. 6–17.
34. Tamaki T. Enzymatic biofuel cells based on three-dimensional conducting electrode matrices. Top. Catal., 2012, vol. 55, pp. 1162–1180.
35. Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A. Electric field effect in atomically thin carbon films. Science, 2004, vol. 306, pp. 666–669.
36. Bonanni A., Loo A. H., Pumera M. Graphene for impedimetric biosensing. TrAC-Trends of Analytical Chemistry, 2012, vol. 37. pp. 12–21.
37. Filip. J., Tkac J. Is graphene worth using in biofuel cells? Electrochimica Acta, 2014, vol. 136, pp. 340–354.
38. Dreyer D. R., Park S., Bielawski C. W., Ruoff R. S. The chemistry of graphene oxide. Chem. Soc. Rev., 2010, vol. 39, pp. 228–240.
39. Liu Y., Dong X., Chen P. Biological and chemical sensors based on graphene materials. Chem. Soc. Rev., 2012, vol. 41, pp. 2283–2307.
40. Wu H., Wang J., Kang X., Wang C., Wang D., Liu J., Aksay I. A., Lin Y. Glucose biosensor based on immobilization of glucose oxdase in platinum nanoparticles/grapheme/chitosan nanocomposite film. Talanta., 2009, vol. 80, pp. 403–406.
41. Liu C., Alwarappan S., Chen Z., Kong X., Li C.-Z. Membraneless enzymatic biofuel cells based on graphene nanosheets. Biosens. Bioelectron., 2010, vol. 25, no. 7, pp. 1829–1833.
42. Shan D., Zhang J., Xue H.-G., Ding S.-N., Cosnier S. Colloidal laponite nanoparticles : Extended application in direct electrochemistry of glucose oxidase and reagentless glucose biosensing. Biosens. Bioelectron., 2010, vol. 25, pp. 1427–1433.
43. Alwarappan S., Boyapalle, S., Kumar, A., Li C. Z., Mohapatra S. Comparative study of single-, few-, and multilayered graphene toward enzyme conjugation and electrochemical response. J. Physical Chemistry С., 2012, vol. 116, no. 11, pp. 6556–559.
44. Zheng W., Zhao H. Y., Zhang J. X., Zhou H. M., Xu X. X., Zheng Y. F., Wang Y. B., Cheng Y., Jang B. Z. A glucose/O2 biofuel cell base on nanographene platelet-modified electrodes, electrochemistry communications. Electrochem. Commun., 2010, vol. 12, pp. 869–871.
45. Chang. L., Zhongfang C., Chen-Zhong L. Surface engineering of graphene-enzyme nanocomposites for miniaturized biofuel cell. IEEE Trans. Nanotechnol., 2011, vol. 10, pp. 59–62.
46. Devadas B., Mani V., Chen S. M. A Glucose/O2 Biofuel Cell Based on Graphene and Multiwalled Carbon Nanotube Composite Modified Electrode. Int. J. Electrochem. Sci., 2012, vol. 7, pp. 8064–8075.
47. Palanisamy S., Cheemalapati S., Chen S. M. An enzymatic biofuel cell based on electrochemically reduced graphene oxide and multiwalled carbon nanotubes/zinc oxide modified electrode. Intern. J. Electrochem. Sci., 2012, vol. 7, pp. 11477–11487.
48. Lee H. Uk, Young Y. H., Lkhagvasuren T., Seok Song Y., Park C., Kim J., Kim W. S. Enzymatic fuel cells based on electrodeposited graphite oxide/cobalt hydroxide/chitosan composite-enzyme electrode. Biosens. Bioelectron., 2013, vol. 42, pp. 342–348.
49. Prasad K. P., Chen Y., Chen P. Three-dimensional graphene – carbon nanotube hybrid for high-performance enzymatic biofuel cells. ACS App. Mater. Interfaces., 2014, vol. 6, pp. 3387–3393.
50. Zhang Y., Mo G., Li X., Zhang W., Zhang J., Ye J., Huang X., Yu C. A graphene modi?ed anode to improve the performance of microbial fuel cells. J. Power Sources, 2011, vol. 196, pp. 5402–5407.
51. Wang Y., Zhao C.-E, Sun D., Zhang J.-R., Zhu J.-J. A Graphene/poly(3,4-ethylenedioxythiophene) hybrid as an anode for high-merformance microbial fuel cells. ChemPlusChem., 2013, vol. 78, no. 8, pp. 823–829.
52. Liu J., Qiao Y., Guo C. X., Lim S., Song H., Li C. M. Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells. Bioresource Technol., 2012, vol. 114, pp. 275–280.
53. He Z. M., Liu J., Qiao Y., Li C. M., Tan T. T. Y. Architecture engineering of hierarchically porous chitosan/vacuum-stripped graphene scaffold as bioanode for high performance microbial fuel cell. Nano Lett., 2012, vol. 12, no. 9, pp. 4738–4741.
54. Huang Y. X., Liu X. W., Xie J. F., Sheng G. P., Wang G. Y, Zhang Y. Y., Xu A. W., Yu H. Q. Graphene oxide nanoribbons greatly enhance extracellular electron transfer in bio-electrochemical systems. Chem. Commun., 2011, vol. 47, pp. 5795–5797.
55. Yong Y.-C., Dong X.-C., Chan-Park M. B., Song H., Chen P. Macroporous and monolithic anode based on polyaniline hybridized three-dimensional graphene for high-performance microbial fuel cells. ACS Nano, 2012, vol. 6, pp. 2394–2400.
56. Zhao C., Wang Y., Shi F., Zhang J., Zhu J.-J. High biocurrent generation in Shewanella-inoculated microbial fuel cells using ionic liquid functionalized graphene nanosheets as an anode. Chem. Commun., 2013, vol. 49, no. 59, pp. 6668–6670.
57. Wang H., Wang G., Ling Y., Qian F., Song Y., Lu X., Chen S., Tong Y., Li Y. High power density microbial fuel cell with flexible 3D graphene–nickel foam as anode. Nanoscale, 2013, vol. 5, no. 4, pp. 10283–10290.
58. Lv Z., Chen Y., Wei H., Li F., Hu Y., Wei C., Feng C. One-step electrosynthesis of polypyrrole/graphene oxide composites for microbial fuel cell application. Electrochim. Acta, 2013, vol. 111, pp. 366–373.
59. Zhao C., Gai P., Liu C., Wang X., Xu H., Zhang J., Zhu J. J. Polyaniline networks grown on graphene nanoribbons-coated carbon paper with a synergistic effect for high-performance microbial fuel cells. J. Mater. Chem., 2013, vol. 1, pp. 12587–12594.
60. Xiao L., Damien J., Luo J., Jang H. D., Huang J., He Z. Crumpled graphene particles for microbial fuel cell electrodes. J. Power Sources, 2012, vol. 208, pp. 187–192.
61. Zhuang L., Yuan Y., Yang G. Q., Zhou S. G. In situ formation of graphene/biofilm composites for enhanced oxygen reduction in biocathode microbial fuel cells. Electrochem. Commun., 2012, vol. 21, pp. 69–72.
62. Xie X., Yu G., Liu N., Bao Z., Criddle C. S., Cui Y. Graphene-sponges as high-performance low-cost anodes for microbialfuel cells. Energy Environ. Sci., 2012, vol. 5, pp. 6862–6866.
63. Yuan Y., Zhou S., Zhao B., Zhuang L., Wang Y. Microbially-reduced graphene scaffolds to facilitate extracellular electron transfer in microbial fuel cells. Bioresource Technol., 2012, vol. 116, pp. 453–458.
64.  Luo J., Jang H. D., Sun T., Xiao L., He Z., Katsoulidis A. P., Kanatzidis M. G., Gibson J. M., Huang J. Compression and Aggregation-Resistant Particles of Crumpled Soft Sheets. ACS Nano., 2011, vol. 5, pp. 8943–8949.
65. Hou J. X., Liu Z. L, Zhang P. Y. A new method for fabrication of graphene/polyaniline nanocomplex modified microbial fuel cell anodes. J. Power Sources. 2013, vol. 224, pp. 139–144.
66. Guo W., Cui Y., Song H., Sun J. Layer-by-layer construction of graphene-based microbial fuel cell for improved power generation and methyl orange removal. Bioprocess. Biosyst. Eng., 2014, vol. 37, pp. 1749–1758.
67. Potter M. C. Electrical effects acompanying the decomposition of organic compounds. Proceedings of the Royal Society of London. Series B, 1911, ch. 84, pp. 260–276.
68. Stirling J. L., Bennetto H. P., Delaney G. M., Mason J. R., Roller S. D., Tanaka K., Thurston C. F. Microbial fuel cells. Biochem. Soc. Trans., 1983, vol. 11, pp. 451–453.
69. Chaudhuri S. K., Lovley D. R. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol., 2003, vol. 21, pp. 1229–1232.
70. Kim H. J., Park H. S., Hyun M. S., Chang I. S., Kim M., Kim B. H. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb. Technol., 2002, vol. 30, pp. 145–152.
71. Schrцder U. Discover the possibilities : microbial bioelectrochemical systems and the revival of a 100-year-old discovery. J. Solid State Electrochem., 2011, vol. 15, pp. 1481–1486.
72. Malvankar N. S., Lovley D. R. Microbial nanowires for bioenergy applications. Curr. Opin. Biotech., 2014, vol. 27, pp. 88–95.
73. Logan B. E., Regan J. M. Electricity-producing bacterial communities inmicrobialfuel cells. Trends Microbiol., 2006, vol. 14, pp. 512–518.
74. Lovley D. R. Live wires : direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination. Energy Environ. Sci., 2011, vol. 4, pp. 4896–4906.
75. Richter H., Nevin K. P., Jia H., Lowy D. A., Lovley D. R., Tender L. M. Cyclic voltammetry of biofilms of wild type and mutant Geobactersulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer. Energy Environ. Sci., 2009, vol. 2, pp. 506–516.
76. Pant D., Bogaert G.Van, Diels L., Vanbroekhoven K. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresource Technol., 2010, vol. 101, pp. 1533–1543.

стр. 173