ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Chudinov E. A., Tkachuk S. A. Technological bases of lithium-ion batteries production. Electrochemical Energetics, 2015, vol. 15, iss. 2, pp. 84-92. DOI: 10.18500/1608-4039-2015-15-2-84-92, EDN: VVIZLN

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Language: 
Russian
Article type: 
Article
EDN: 
VVIZLN

Technological bases of lithium-ion batteries production

Autors: 
Chudinov Evgenii Alekseevich, Siberian State Technological University
Tkachuk Sergey Aleksandrovich, Siberian State Technological University
Abstract: 

It is shown that the performance of lithium-ion battery is significantly affected by the component structure of the electrodes, electrode fabrication technology, forming the battery mode. It is shown that in the production of lithium-ion batteries can be used the following materials: as a binder – polymer dispersion of water-based СНР 500, the negative electrode material – synthetic graphite 131181008–1 brands and 20130905.

Reference: 

1. Kedrinskiy I. A., Yakovlev V. G. Li-ionnye akkumulyatory. Krasnoyarsk, IPK Platina, 2002, 266 p. (in Russian).
2. Fialkov A. S. Uglerod, mezhsloevye soedineniya i kompozity na ego osnove, Moscow, Aspekt-press, 1997, 720 p.
3. Chudinov E. A. Metod zaryada uglerodnyh elektrodov litiy-ionnogo akkumulyatora. Izvestiya vuzov. Chimija i chimicheskaya technologiya, 2005, vol. 48, no. 8, pp.45–49.
4. Aurbach D., Eni-Eli Y., Chusid O., Carmel Y., Ba\-bai M., Yamin H. The Correlation Between the Surface Chemistry and the Performance of Li-Carbon Intercalation Anodes for rechargeable «Roking-Chair» Type Batteries. J. Electrochem. Soc., 1994, vol. 141, no. 3, pp. 603–611.
5. Shu Z. X., McMillan R. S., Murray J. J. Electrochemical Intercalation of Lithium into Graphite. J. Electrochem. Soc., 1993, vol. 140, no. 4, pp. 922–927.
6. Olshanskaya O. L., Lazareva E. N., Klepkov A. P. Vliyanie velicheny potenziala catodnoy polyarizazii na prozess inrercalyazii-deinrercalyazii litiya v structure electrode. Vestnik SGTU, 2007, no. 2(25), iss. 2, pp.116–124.
7. Podalinsky Yu. Ya. Perviy zaryad litiy-ionnogo akkumulyatora, dis. \ldots kand. techn. nauk, SibGTU, Krasnoyarsk, 2005, 184 p. (in Russian).
8. Aurbach D., Markovsky В., Salitra G., Markevich E., Talyossef Y., Koltypin M., Nazar L., Ellis В., Kovacheva D. Review on electrode-electrolyte solutioninteractions, related to cathode materials for Li-ion batteries II. J. Power Sources, 2007, vol. 165, pp.491–499.
9. Fong R., Sacken U., Dahn J. R. Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells. J. Electrochem. Soc., 1990, vol.137, no. 7, pp. 2009–2013.
10. Jmanishi N., Kashiwagi H., Jshikawa T., Hara M. Characteristics of Mesophase-Pitch-Based Carbon Fibers for Lithium Cells. J. Electrochem. Soc., 1993, vol.140, no. 2, pp.315–320.
11. King W., Xue J. S., Dahk. J. R. Optimizing Pyrolysis of Sugar Carbons for Use as Anode Materials in Lithium Ion Batteries. J. Electrochem. Soc., 1996, vol.143, no. 9, pp. 3046–3054.
12. Levi M. D., Aurbach D. The mechanism of lithium intercalation in graphite film electrodes in aprotic media. Part 1. High resolution slow scan rate cyclic voltammetric studies and modeling. J. Electroanal. Chem., 1997, vol. 21, no. 1–2, pp. 79–88.

Received: 
30.05.2015
Accepted: 
30.05.2015
Published: 
30.06.2015