ISSN 1608-4039 (Print)
ISSN 1680-9505 (Online)


For citation:

Artyukhov D. I., Kiselev N. V., Gorshkov N. V., Gorokhovskii A. V., Burmistrov I. N. Research of Efficiency Dependence of Thermoelectrochemicals of Electrolyte Concentration. Electrochemical Energetics, 2019, vol. 19, iss. 4, pp. 212-?. DOI: 10.18500/1608-4039-2019-19-4-212-222, EDN: BRFDBM

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text:
(downloads: 47)
Language: 
Russian
Article type: 
Article
EDN: 
BRFDBM

Research of Efficiency Dependence of Thermoelectrochemicals of Electrolyte Concentration

Autors: 
Artyukhov Denis Ivanovich, The Saratov State Technical University of Gagarin Yu. A.
Kiselev Nikolai Vital'evich, The Saratov State Technical University of Gagarin Yu. A.
Gorshkov Nikolai Vyacheslavovich, The Saratov State Technical University of Gagarin Yu. A.
Gorokhovskii Aleksandr Vladilenovich, The Saratov State Technical University of Gagarin Yu. A.
Burmistrov Igor' Nikolaevich, The Saratov State Technical University of Gagarin Yu. A.
Abstract: 

The use of heat of low-temperature sources dissipated into the environment for the production of useful energy is an urgent scientific and technical task. The article discusses the electrochemical principle of collecting the heat of low potential sources (temperature less than 100°C) and converting it into electricity using a thermoelectrochemical cell based on complex salts of potassium ferri/ferrocyanide redox electrolyte. The efficiency of converting low-grade heat into useful energy in the studied cell type largely depends on the electrolyte concentration. In the course of the work, the dependences of the output power of the thermoelectrochemical cell on the electrolyte concentration in the range from 0.2 to 0.6 mol/L and at temperature gradients from 10 to 50 degrees were established. The results of complex impedance measurements showed the dependence between the internal resistance of the cell and the electrolyte concentration. The data obtained make it possible to optimize the composition of electrolytes based on potassium ferri/ferrocyanide to develop devices for collecting the conversion of low-grade heat to electricity.

Reference: 

1. Dupont M. F., MacFarlane D. R., Pringle J. M. Thermo-electrochemical cells for waste heat harvesting – progress and perspectives. Chem. Commun., 2017, vol. 53, no. 47, pp. 6288–6302. DOI: https://doi.org/10.1039/C7CC02160G

2. Gunawan A., Lin C.-H., Buttry D. A. Liquid thermoelectrics : review of recent and limited new data of thermogalvanic cell experiments. Nanoscale Microscale Thermophys, 2013, vol. 17, no. 4, pp. 304–323. DOI: https://doi.org/10.1080/15567265.2013.776149

3. Im H., Kim T., Song H., Choi J., Park J. S., Ovalle-Robles R., Yang H. D., Kihm K. D., Baughman R. H., Lee H. H., Kang T. J., Kim Y. H. High-efficiency electrochemical thermal energy harvester using carbon nanotube aerogel sheet electrodes. Nature communications, 2016, vol. 7, pp. 1–8. DOI: https://doi.org/10.1038/ncomms10600

4. Shindrov A., Artyukhov D., Vikulova M., Spirin N., Nikitina N., Savin N., Gorshkov N., Burmistrov I. Thermo-electrochemical cells based on polymer and mineral hydrogels for low-grade waste heat conversion. AIP Conference Proceedings, 2017, vol. 1899, no. 1, pp. 020016. DOI: https://doi.org//10.1063/1.5009841

5. Zhang L., Kim T., Li N., Kang,T. J., Chen J., Pringle J. M., Zhang M., Kazim A. H., Fang S., Haines C., Al-Masri D., Cola B. A., Razal J. M., Di J., Beirne S., MacFarlane D. R., Gonzalez-Martin A., Mathew S., Kim Y. H., Wallace G., Baughman R. H. High Power Density Electrochemical Thermocells for Inexpensively Harvesting Low-Grade Thermal Energy. Advanced Materials, 2017, vol. 29, no. 12, pp. 1605652. DOI: https://doi.org//10.1002/adma.201605652

6. Romano M., Li N., Antiohos D., Razal J., Nattestad A., Beirne S., Fang S., Chen Y., Jalili R., Wallace G., Baughman R., Chen J. Carbon Nanotube – Reduced Graphene Oxide Composites for Thermal Energy Harvesting Applications. Advanced Materials, 2013, vol. 25, no. 45, pp. 6602–6606. DOI: https://doi.org//10.1002/adma.201303295

7. Kim T., Lee J., Lee G., Yoon H., Kang T., Kim Y. High thermopower of ferri / ferrocyanide redox couple in organic-water solutions. Nano Energy, 2016, vol. 31, pp. 160–167. DOI: https://doi.org//10.1016/j.nanoen.2016.11.014

8. Quickenden T. I., Mua Y. A. Review of power generation in aqueous thermogalvanic cells. J. Electrochem. Soc., 1995, vol. 142, no. 11, pp. 3985–3994. DOI: https://doi.org/10.1149/1.2048446

9. Kazim A. H., Cola B. A. Electrochemical Characterization of Carbon Nanotube and Poly (3,4-ethylenedioxythiophene)Poly(styrenesulfonate) Composite Aqueous Electrolyte for Thermo-Electrochemical Cells. Journal of the Electrochemical Society, 2016, vol. 163, no. 8, pp. F867–F871. DOI: https://doi.org//10.1149/2.0981608jes

10. Alavanthar T., Ellappan V., Stimulating electrode design for implantable sub retina research application : A novel approach. International Journal of Engineering & Technology, 2018, vol. 7, no. 2.24, pp. 570–577.

11. Parulekar S., Sholapure S., Holmukhe R. M., Karandikar P. B., Study of PVDF Based Electrode Structure in Supercapacitors. International Journal of Engineering & Technology, 2018, vol. 7, no. 4.5, pp. 313–315.

12. Wang J. B., Zhang H., Guo X., Full coupling response of single-walled carbon nanotubes. International Journal for Multiscale Computational Engineering, 2013, vol. 11, no. 1, pp. 37–43. DOI: https://doi.org/10.1615/IntJMultCompEng.2012003180

13. Burmistrov I. N., Muratov D. S., Ilinykh I. A., Kolesmikov E. A., Godymchuk A. Yu., Kuznetsov D. V. The effects of liquid-phase oxidation of multiwall carbon nanotubes on their surface characteristics. IOP Conference Series : Materials Science and Engineering, 2016, vol. 112, no. 1, pp. 012004. DOI: https://doi.org/10.1088/1757-899X/112/1/012004

14. Burmistrov I., Kovyneva N., Gorshkov N., Gorokhovsky A., Durakov A., Artyukhov D., Kiselev N. Development of new electrode materials for thermo-electrochemical cells for waste heat harvesting. Renewable Energy Focus, 2019, vol. 29, pp. 42–48. DOI: https://doi.org//10.1016/j.ref.2019.02.003

15. Hu R., Cola B., Haram N., Barisci J., Lee S., Stoughton S., Wallace G., Too C., Thomas M., Gestos A., Cruz M., Ferraris J., Zakhidov A., Baughman R., Harvesting Waste Thermal Energy Using a Carbon-Nanotube-Based ThermoElectrochemical Cell. Nano Letters, 2010, vol. 10, no. 3, pp. 838–846. DOI: https://doi.org//10.1021/nl903267n

Received: 
22.11.2019
Accepted: 
29.11.2019
Published: 
23.12.2019